Browse > Article
http://dx.doi.org/10.5423/PPJ.2011.27.2.103

Regulation of Pathogenesis by Light in Cercospora zeae-maydis: An Updated Perspective  

Kim, Hun (Department of Plant Pathology, University of Arkansas)
Ridenour, John B. (Department of Plant Pathology, University of Arkansas)
Dunkle, Larry D. (Crop Production & Pest Control Research Unit, USDA-ARS, Purdue University)
Bluhm, Burton H. (Department of Plant Pathology, University of Arkansas)
Publication Information
The Plant Pathology Journal / v.27, no.2, 2011 , pp. 103-109 More about this Journal
Abstract
The fungal genus Cercospora is one of the most ubiquitous groups of plant pathogenic fungi, and gray leaf spot caused by C. zeae-maydis is one of the most widespread and damaging foliar diseases of maize in the world. While light has been implicated as a critical environmental regulator of pathogenesis in C. zeae-maydis, the relationship between light and the development of disease is not fully understood. Recent discoveries have provided new insights into how light influences pathogenesis and morphogenesis in C. zeae-maydis, particularly at the molecular level. This review is focused on integrating old and new information to provide an updated perspective of how light influences pathogenesis, and provides a working model to explain some of the underlying molecular mechanisms. Ultimately, a thorough molecular-level understanding of how light regulates pathogenesis will augment efforts to manage gray leaf spot by improving host resistance and disease management strategies.
Keywords
Cercospora; photoreceptor; stomatal tropism;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Shim, W. and Dunkle, L. D. 2003. CZK3, A map kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol. Plant-Microbe Interact. 16:760-768.   DOI   ScienceOn
2 Shimazaki, K., Doi, M., Assmann, S. M. and Kinoshita, T. 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58:219-247.   DOI   ScienceOn
3 Tehon, L. R. and Daniels, E. 1925. Notes on the parasitic fungi of Illinois. Mycologia 17:240-249.   DOI
4 Upchurch, R. G., Walker, D. C., Rollins, J. A., Ehrenshaft, M. and Daub, M. E. 1991. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity. Appl. Environ. Microbiol. 57:2940-2945.
5 Veluchamy, S. and Rollins, J. A. 2008. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet. Biol. 45:1265-1276.   DOI   ScienceOn
6 Wang, J., Levy, M. and Dunkle, L. D. 1998. Sibling species of Cercospora associated with gray leaf spot of maize. Phytopathology 88:1269-1275.   DOI   ScienceOn
7 Ward, J. M. J., Stromberg, E. L., Nowell, D. C. and Nutter, F. W. 1999. Grey leaf spot, a disease of global importance in maize production. Plant Dis. 83:884-895.   DOI
8 Waschuk, S. A., Bezerra, A. G. Jr., Shi, L. and Brown, L. S. 2005. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc. Natl. Acad. Sci. USA 102:6879-6883.   DOI   ScienceOn
9 Weiland, J. and Koch, G. 2004. Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol. Plant Pathol. 5:157-166.   DOI   ScienceOn
10 You, B. J., Lee, M. H. and Chung, K. R. 2008. Production of cercosporin toxin by the phytopathogenic Cercospora fungi is affected by diverse environmental signals. Can. J. Microbiol. 54:259-269.   DOI
11 Mian, M. A. R., Missaoui, A. M., Walker, D. R., Phillips, D. V. and Boerma, H. R. 2008. Frogeye leaf spot of soybean: A review and proposed race designations for isolates of Cercospora sojina Hara. Crop Sci. 48:14-24.   DOI   ScienceOn
12 Nemchenko, A., Kunze, S., Feussner, I. and Kolomiets, M. 2006. Duplicate maize 13- lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection and hormonal treatments. J. Exp. Bot. 57:3767-3779.   DOI   ScienceOn
13 Roden, L. C. and Ingle, R. A. 2009. Lights, rhythms, infection: The role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21:2546-2552.   DOI   ScienceOn
14 Prost, I., Dhondt, S., Rothe, G., Vicente, J., Rodriguez, M. J., Kift, N., et al. 2005. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 139:1902-1913.   DOI   ScienceOn
15 Purschwitz, J., Muller, S., Kastner, C. and Fischer, R. 2006. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 9:566-571.   DOI   ScienceOn
16 Purschwitz, J., Muller, S., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui, A., Calvo, A. M. and Fischer, R. 2008. Functional and physical interaction of blue- and red light sensors in Aspergillus nidulans. Curr. Biol. 18:1-5.   DOI   ScienceOn
17 Rosahl, S. and Feussner, I. 2004. Oxylipins. In: Plant lipids: Biology, utilisation and manipulation, ed. by D. J. Murphy, pp. 329-354. Oxford: Blackwell Publisher.
18 Ruiz-Roldan, M. C., Garre, V., Guarro, J., Marine, M. and Roncero, M. I. 2008. Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot. Cell 7:1227-1230.   DOI   ScienceOn
19 Rupe, J. C., Siegel, M. R. and Hartmann, J. R. 1982. Influence of environment and plant maturity on gray leaf spot of corn caused by Cercospora zeae-maydis. Phytopathology 72:1587-1591.   DOI
20 Hanson, L. E. 2010. Genetics of Fungicide Resistance in Cercospora and Mycospharella. In: Cercospora Leaf Spot of Sugar Beet and Related Species, ed. by R. T. Lartey, J. J. Weiland, L. Panella, P. W. Crous and C. E. Windels, pp. 179-188. APS Press. St. Paul, USA.
21 Herrera-Estrella, A. and Horwitz, B. A. 2007. Looking through the eyes of fungi: molecular genetics of photoreception. Mol. Microbiol. 64:5-15.   DOI   ScienceOn
22 Karpinski, S., Gabrys, H., Mateo, A., Karpinska, B. and Mullineaux, P. M. 2003. Light perception in plant disease defence signalling. Curr. Opin. Plant Biol. 6:390-396.   DOI   ScienceOn
23 Idnurm, A. and Crosson, S. 2009. The photobiology of microbial pathogenesis. PLoS Pathogens 5:e1000470.   DOI   ScienceOn
24 Idnurm, A. and Heitman, J. 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 3:e95.   DOI   ScienceOn
25 Jerebzoff, S. 1965. Growth rhythms. In: The Fungi, ed. by G. C. Ainsworth and A. S. Sussman, vol. I, pp. 625. Academic Press, London, UK.
26 Latterell, F. M. and Rossi, A. E. 1983. Gray leaf spot of corn: a disease on the move. Plant Dis. 67:842-847.   DOI
27 Lee, K., Dunlap, J. C. and Loros, J. J. 2003. Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa. Genetics 163:103-114.
28 Lin, C. and Todo, T. 2005. The cryptochromes. Genome Biol. 6:220-228.   DOI
29 Lozano, J. and Sequeira, L. 1970. Differentiation of races of Pseudomonas solanacearum by a leaf infiltration technique. Phytopathology 60:833-838.   DOI
30 Meisel, B., Korsman, J., Kloppers, F. J. and Berger, D. K. 2009. Cercospora zeina is the causal agent of grey leaf spot disease of maize in southern Africa. Eur. J. Plant Pathol. 124:577-583.   DOI
31 Dekkers, K. L., You, B. J., Gowda, V. S., Liao, H. L., Lee, M. H., Bau, J. J., Ueng, P. P. and Chung, K. R. 2007. The Cercospora nicotianae gene encoding dual O-methyltransferase and FAD dependent monooxygenase domains mediates cercosporin toxin biosynthesis. Fungal Genet. Biol. 44:444-454.   DOI   ScienceOn
32 Farmer, E. E., Almeras, E. and Krishnamurthy, V. 2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6:372-378.   DOI   ScienceOn
33 Dunkle, L. D. and Levy, M. 2000. Genetic relatedness of African and United States populations of Cercospora zeae-maydis. Phytopathology 90:486-490.   DOI   ScienceOn
34 Dunlap, J. C. and Loros, J. J. 2006. How fungi keep time: circadian system in Neurospora and other fungi. Curr. Opin. Microbiol. 9:579-587.   DOI   ScienceOn
35 Estrada, A. F. and Avalos, J. 2008. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet. Biol. 45:705-718.   DOI   ScienceOn
36 Goodwin, S. B., Dunkle, L. D. and Zisman, V. L. 2001. Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology 91:648-658.   DOI   ScienceOn
37 Griebel, T. and Zeier, J. 2008. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol. 147:790-801.   DOI   ScienceOn
38 Guo, A., Reimers, P. J. and Leach, J. E. 1993. Effect of light on incompatible interactions between Xanthomonas oryzae pv oryzae and rice. Physiol. Mol. Plant Pathol. 42:413-425.   DOI   ScienceOn
39 Callahan, T., Rose, M., Meade, M., Ehrenshaft, M. and Upchurch, R. 1999. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. Mol. Plant-Microbe Interact. 12:901-910.   DOI   ScienceOn
40 Chen, H. Q., Lee, M. H. and Chung, K. R. 2007a. Functional characterization of three genes encoding putative oxidoreductases required for cercosporin toxin blosynthesis in the fungus Cercospora nicotianae. Microbiology 153:2781-2790.   DOI   ScienceOn
41 Chen, H. Q., Lee, M. H., Daub, M. E. and Chung, K. R. 2007b. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol. Microbiol. 64:755-770.   DOI   ScienceOn
42 Choquer, M., Lee, M. H., Bau, H. J. and Chung, K. R. 2007. Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett. 581:489-494.   DOI   ScienceOn
43 Colhoun, J. 1973. Effects of environmental factors on plant disease. Annu. Rev. Phytopathol. 11:343-364.   DOI   ScienceOn
44 Crosson, S., Rajagopal, S. and Moffat, K. 2003. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2-10.   DOI   ScienceOn
45 Crous, P. W. and Braun, U. 2003. Mycosphaerella and its anamorphs. 1. Names published in Cercospora and Passalora. CBS Biodiversity Series 1:1-571.
46 Crous, P. W., Groenewald, J. Z., Groenewald, M., Caldwell, P., Braun, U. and Harrington, T. C. 2006. Species of Cercospora associated with grey leaf spot of maize. Stud. Mycol. 55:189-197.   DOI   ScienceOn
47 Daub, M. E. and Ehrenshaft, M. 2000. The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu. Rev. Phytopathol. 38:461-490.   DOI   ScienceOn
48 Beckman, P. M. and Payne, G. A. 1983. Cultural techniques and conditions influencing growth and sporulation of Cercospora zeae-maydis and lesion development in corn. Phytopathology 73:286-289.   DOI
49 Bieszke, J. A., Spudich, E. N., Scott, K. L., Borkovich, K. A., and Spudich, J. L. 1999. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138-14145.   DOI   ScienceOn
50 Bell-Pedersen, D., Garceau, N. and Loros, J. J. 1996. Circadian rhythms in fungi. J. Genetics. 75:387-401.   DOI
51 Bluhm, B. H., Burnham, A. M. and Dunkle, L. D. 2010. A circadian rhythm regulating hyphal melanization in Cercospora kikuchii. Mycologia 102:1221-1228.   DOI   ScienceOn
52 Bluhm, B. H., Dhillon, B., Lindquist, E. A., Kema, G. H. J., Goodwin, S. B. and Dunkle, L. D. 2008. Expressed sequence tags derived from the maize foliar pathogen Cercospora zeae-maydis identify novel genes differentially expressed during vegetative, infectious, and reproductive growth. BMC Genomics 9:523.   DOI   ScienceOn
53 Bluhm, B. and Dunkle, L. D. 2008. Phl1 of Cercospora zeaemaydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development. Fungal Gen. Biol. 45:1364-1372.   DOI   ScienceOn
54 Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg-Dinkel, N. and Fischer, R. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15:1833-1838.   DOI   ScienceOn
55 Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E., Read, N. D., Seiler, S., Bell-Pedersen, D., Paietta, J., Plesofsky, N., Plamann, M., Goodrich-Tanrikulu, M., Schulte, U., Mannhaupt, G., Nargang, F. E., Radford, A., Selitrennikoff, C., Galagan, J. E., Dunlap, J. C., Loros, J. J., et al. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1-108.   DOI   ScienceOn
56 Bechtold, U., Karpinski, S. and Mullineaux, P. 2005. The influence of the light environment and photosynthesis on oxidative signaling responses in plant-biotrophic pathogen interactions. Plant Cell Environ. 28:1046-1055.   DOI   ScienceOn
57 Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J. and Cardenas, M. E. 2007. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5:57-69.   DOI   ScienceOn
58 Ballario, P., Vittorioso, P., Magrelli, A., Talora, C., Cabibbo, A. and Macino, G. 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 15:1650-1657.
59 Ballario, P., Talora, C., Galli, D., Linden, H. and Macino, G. 1998. Roles in dimerization and blue light photoresponse of the PAS and LOV domain of Neurospora crassa white collar proteins. Mol. Microbiol. 29:719-729.   DOI   ScienceOn
60 Beckman, P. M. and Payne, G. A. 1982. External growth, penetration, and development of Cercospora zeae-maydis in corn leaves. Phytopathology 72:810-815.   DOI