• 제목/요약/키워드: homotopy category

검색결과 17건 처리시간 0.023초

SELF-PAIR HOMOTOPY EQUIVALENCES RELATED TO CO-VARIANT FUNCTORS

  • Ho Won Choi;Kee Young Lee;Hye Seon Shin
    • 대한수학회지
    • /
    • 제61권3호
    • /
    • pp.409-425
    • /
    • 2024
  • The category of pairs is the category whose objects are maps between two based spaces and morphisms are pair-maps from one object to another object. To study the self-homotopy equivalences in the category of pairs, we use covariant functors from the category of pairs to the group category whose objects are groups and morphisms are group homomorphisms. We introduce specific subgroups of groups of self-pair homotopy equivalences and put these groups together into certain sequences. We investigate properties of these sequences, in particular, the exactness and split. We apply the results to two special functors, homotopy and homology functors and determine the suggested several subgroups of groups of self-pair homotopy equivalences.

TWO DESCRIPTIONS OF RELATIVE DERIVED CATEGORIES

  • Bahiraei, Payam
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.53-71
    • /
    • 2018
  • In this paper, we provide two different descriptions for a relative derived category with respect to a subcategory ${\mathcal{X}}$ of an abelian category ${\mathcal{A}}$. First, we construct an exact model structure on certain exact category which has as its homotopy category the relative derived category of ${\mathcal{A}}$. We also show that a relative derived category is equivalent to homotopy category of certain complexes. Moreover, we investigate the existence of certain recollements in such categories.

THE HOMOTOPY CATEGORIES OF N-COMPLEXES OF INJECTIVES AND PROJECTIVES

  • Xie, Zongyang;Yang, Xiaoyan
    • 대한수학회지
    • /
    • 제56권3호
    • /
    • pp.623-644
    • /
    • 2019
  • We investigate the homotopy category ${\mathcal{K}}_N(Inj{\mathfrak{A}})$ of N-complexes of injectives in a Grothendieck abelian category ${\mathfrak{A}}$ not necessarily locally noetherian, and prove that the inclusion ${\mathcal{K}}_N(Inj{\mathfrak{A}}){\rightarrow}{\mathcal{K}}({\mathfrak{A}})$ has a left adjoint and ${\mathcal{K}}_N(Inj{\mathfrak{A}})$ is well generated. We also show that the homotopy category ${\mathcal{K}}_N(PrjR)$ of N-complexes of projectives is compactly generated whenever R is right coherent.

HOMOTOPY TYPE OF A 2-CATEGORY

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • 제18권2호
    • /
    • pp.175-183
    • /
    • 2010
  • The classical group completion theorem states that under a certain condition the homology of ${\Omega}BM$ is computed by inverting ${\pi}_0M$ in the homology of M. McDuff and Segal extended this theorem in terms of homology fibration. Recently, more general group completion theorem for simplicial spaces was developed. In this paper, we construct a symmetric monoidal 2-category ${\mathcal{A}}$. The 1-morphisms of ${\mathcal{A}}$ are generated by three atomic 2-dimensional CW-complexes and the set of 2-morphisms is given by the group of path components of the space of homotopy equivalences of 1-morphisms. The main part of the paper is to compute the homotopy type of the group completion of the classifying space of ${\mathcal{A}}$, which is shown to be homotopy equivalent to ${\mathbb{Z}}{\times}BAut^+_{\infty}$.

DERIVED CROSSED MODULES

  • Sahan, Tuncar
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.439-458
    • /
    • 2018
  • In this study, we interpret the notion of homotopy of morphisms in the category of crossed modules in a category C of groups with operations using the categorical equivalence between the categories of crossed modules and of internal categories in C. Further, we characterize the derivations of crossed modules in a category C and obtain new crossed modules using regular derivations of old one.

GOTTLIEB SUBSETS WITH RESPECT TO A MORPHISM IN THE CATEGORY OF PAIRS

  • Kim, Ji-Yean;Lee, Kee-Young
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1311-1327
    • /
    • 2010
  • We introduce the concept of cyclic morphisms with respect to a morphism in the category of pairs as a generalization of the concept of cyclic maps and we use the concept to obtain certain sets of homotopy classes in the category of pairs. For these sets, we get complete or partial answers to the following questions: (1) Is the concept the most general concept in the class of all concepts of generalized Gottlieb subsets introduced by many authors until now? (2) Are they homotopy invariants in the category of pairs? (3) When do they have a group structure?.

The Universal Property of Inverse Semigroup Equivariant KK-theory

  • Burgstaller, Bernhard
    • Kyungpook Mathematical Journal
    • /
    • 제61권1호
    • /
    • pp.111-137
    • /
    • 2021
  • Higson proved that every homotopy invariant, stable and split exact functor from the category of C⁎-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting.

THE GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • 대한수학회지
    • /
    • 제43권3호
    • /
    • pp.491-506
    • /
    • 2006
  • In this paper, we extend the concept of the group ${\varepsilon}(X)$ of self homotopy equivalences of a space X to that of an object in the category of pairs. Mainly, we study the group ${\varepsilon}(X,\;A)$ of pair homotopy equivalences from a CW-pair (X, A) to itself which is the special case of the extended concept. For a CW-pair (X, A), we find an exact sequence $1\;{\to}\;G\;{\to}\;{\varepsilon}(X,\;A)\;{to}\;{\varepsilon}(A)$ where G is a subgroup of ${\varepsilon}(X,\;A)$. Especially, for CW homotopy associative and inversive H-spaces X and Y, we obtain a split short exact sequence $1\;{\to}\;{\varepsilon}(X)\;{\to}\;{\varepsilon}(X{\times}Y,Y)\;{\to}\;{\varepsilon}(Y)\;{\to}\;1$ provided the two sets $[X{\wedge}Y,\;X{\times}Y]$ and [X, Y] are trivial.

COBORDISM의 소개(紹介)

  • 이기안
    • 호남수학학술지
    • /
    • 제1권1호
    • /
    • pp.77-81
    • /
    • 1979
  • Almost mathematicians wish to study on the classification of the objects within isomorphism and determination of effective and computable invariants to distinguish the isomorphism classes. In topology, the concepts of homotopy and homeomorphism are such examples. In this lecture I shall speak of with respect to (i) Thom's cobordism group (ii) Cobordism category (iii) finally, the semigroup in cobordism category is isomorphic to the Thom's cobordism group.

  • PDF

FIBREWISE INFINITE SYMMETRIC PRODUCTS AND M-CATEGORY

  • Hans, Scheerer;Manfred, Stelzer
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.671-682
    • /
    • 1999
  • Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E\;\longrightarrow\;B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E)\;l\ongrightarrow\;B$. For any pointed space B let $G_I(B)\;\longrightarrow\;B$ be the i-th Ganea fibration. Defining $M_R-cat(B):= inf{i\midR_f(G_i(B))\longrihghtarrow\;B$ admits a section} we obtain an approximation to the Lusternik-Schnirelmann category of B which satisfies .g.a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_Q$-cat(B) coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to cat (B) by a result of K.Hess. All the constructions more generally apply to the Ganea category of maps.

  • PDF