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THE HOMOTOPY CATEGORIES OF N-COMPLEXES OF

INJECTIVES AND PROJECTIVES

Zongyang Xie and Xiaoyan Yang

Abstract. We investigate the homotopy category KN (InjA ) of N -comp-
lexes of injectives in a Grothendieck abelian category A not necessarily

locally noetherian, and prove that the inclusion K(InjA ) → K(A ) has

a left adjoint and KN (InjA ) is well generated. We also show that the
homotopy category KN (PrjR) of N -complexes of projectives is compactly

generated whenever R is right coherent.

1. Introduction

Homological algebra mostly studies complexes, having a differential d sat-
isfying d2 = 0. It is natural to ask why d2 = 0 and not, say, d3 = 0. The
idea to investigate complexes with a differential d such that dN = 0 where
N > 3 was introduced by Kapranov [6] and there he hinted to their possible
connections to quantum theories. Since then many papers have appeared on
the subject, many of them studying their interesting homology and indicating
some possible applications of N -complexes for certain nonassociative algebras.
In 2015, Yang and Ding [15] provided an effective construction of left and
right triangles, and proved that the homotopy category and the derived cate-
gory of N -complexes over an abelian category are pretriangulated categories.
Iyama, Kato and Miyachi [3] proved that the homotopy category KN (B) of
N -complexes of an additive category B is a triangulated category.

Krause [9] studied the homotopy category K(InjA ) of complexes (N = 2) of
injectives in a locally noetherian Grothendieck abelian category A . Because A
is locally noetherian, arbitrary direct sums of injectives are injective, and hence
the category K(InjA ) has coproducts. It turns out that K(InjA ) is compactly
generated. Neeman [12] studied this further in the nonnoetherian case. He
proved that for a Grothendieck abelian category A , the category K(InjA ) has
coproducts and is well generated. The current paper considers the homotopy
category KN (InjA ) of N -complexes of injectives, we prove that:
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Theorem A. Let A be a Grothendieck abelian category not necessarily locally
noetherian.

(1) The inclusion i : KN (InjA ) → KN (A ) has a left adjoint i`. Therefore,
the homotopy category KN (InjA ) has arbitrary coproducts.

(2) There is a regular cardinal µ for which the category KN (InjA ) is µ-
compactly generated.

Jøgensen [5] studied the analogue where injectives are replaced by projec-
tives. Since Grothendieck abelian categories rarely have enough projectives,
Jøgensen’s results all assumed that he was working over a ring. Under suit-
able noetherian hypotheses, he proved an analogue of Krause’s theorem: the
homotopy category K(PrjR) is compactly generated. Afterwards, the homo-
topy category of flat R-modules came into play by Neeman [11]. Among other
things, he showed that K(PrjR) is compactly generated if R is right coherent
which gives a generalization of result of [5]. We have the following result for
the homotopy category KN (PrjR) of N -complexes of projectives.

Theorem B. Let R be a right coherent ring. Then the homotopy category
KN (PrjR) of N -complexes of projectives is compactly generated.

2. Preliminaries and basic facts

This section is devoted to recalling some notions and basic consequences for
use throughout this paper. For terminology we shall follow [2] and [3].

N-complexes. An N -complex X in an abelian category A is a sequence of
objects in A

· · ·
dXn+2−→ Xn+1

dXn+1−→ Xn
dXn−→ Xn−1

dXn−1−→ · · ·
satisfying dN = 0. That is, composing any N -consecutive morphisms gives
0. So a 2-complex is a chain complex in the usual sense. A chain map or
simply map f : X → Y of N -complexes is a collection of morphisms fn :
Xn → Yn making all the rectangles commute. In this way we get a category of
N -complexes, denoted by CN (A ).

For an N -complex X, there are N − 1 choices for homology. Indeed for
t = 1, . . . , N , we define

Ztn(X) = ker(dn−(t−1) · · · dn−1dn) and Btn(X) = Im(dn+1dn+2 · · · dn+t).

In particular, we have Z1
n(X) = kerdn, ZNn (X) = Xn and B1

n(X) = Imdn+1,

BNn (X) = 0. We also define Ht
n(X) = Ztn(X)/BN−tn (X) the amplitude homol-

ogy objects of X for t = 1, . . . , N − 1. We say X is acyclic if Ht
n(X) = 0 for all

n and t.
Given an object A of A , we define N -complexes Dt

n(A) for t = 1, . . . , N as
follows. Dt

n(A) consists of A in degrees n, n − 1, . . . , n − (t − 1), all joined by
identity morphisms, and 0 in every other degree.
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Two chain maps f, g : X → Y of N -complexes are called chain homotopic, or
simply homotopic if there exists a collection of morphisms {sn : Xn → Yn+N−1}
such that

gn − fn = dN−1sn + dN−2sn−1d+ · · ·+ sn−(N−1)d
N−1

=

N−1∑
i=0

d(N−1)−isn−id
i, ∀ n.

If f and g are homotopic, then we write f ∼ g. We call f null homotopic if
f ∼ 0. There exists an additive category KN (A ), called the homotopy category
of N -complexes, whose objects are the same as those of CN (A ) and whose Hom
sets are the ∼ equivalence classes of Hom sets in CN (A ). An isomorphism in
KN (A ) is called a homotopy equivalence.

The homotopy category KN (A ). Let (X, dX), (Y, dY ) be objects and u :
X → Y a morphism in CN (A ). Then the mapping cone C(u) of u is given as

C(u)n = Yn ⊕ (ΣX)n, d
C(u) =


d u 0 ··· 0 0
0 −d 1 ··· 0 0

...
...

...
...

...
...

0 −dN−2 0 ··· 0 1

0 −dN−1 0 ··· 0 0

 ,

Σ−1C(u)n = (Σ−1Y )n ⊕Xn, d
Σ−1C(u) =


0 1 0 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 1 0

−dN−1 −dN−2 −dN−3 ··· −d u
0 0 0 ··· 0 d

 ,
where (ΣX)n = Xn−1 ⊕ · · · ⊕Xn−(N−1) and (Σ−1Y )n = Yn+N−1 ⊕ · · · ⊕ Yn+1

with

dΣX =

 −d 1 0 ··· 0 0

...
...

...
...

...
...

−dN−2 0 0 ··· 0 1

−dN−1 0 0 ··· 0 0

 , dΣ−1Y =

 0 1 0 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 0 1

−dN−1 −dN−2 −dN−3 ··· −d2 −d

 .
We say a diagram in KN (A ) is a distinguished triangle if it is isomorphic to

a diagram

X
u−→ Y

v−→ C(u)
w−→ ΣX

arising from a chain map u : X → Y , where v =

[ 1
0
...
0

]
and w =

[
0 1 ··· 0
...

...
...

...
0 0 ··· 1

]
.

Lemma 2.1 ([15]). Let u ∈ HomCN (A )(X,Z). Then the following are equivalent:

(1) u is null homotopic;

(2) The canonical exact sequence 0→ Z
v→ C(u)

w→ ΣX → 0 splits.

There is more structure on CN (A ) which we will need. Namely, instead of
all short exact sequences 0→ X → Y → Z → 0 of N -complexes, we sometimes
consider only the sequences for which 0 → Xn → Yn → Zn → 0 splits in A
for each n ∈ Z. These exact sequences make CN (A ) an exact category in the
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sense of [7, App. A], with the componentwise split exact structure, and allow
us to define a corresponding variant of the Yoneda Ext which we denote by
Ext1

CN (A ),c.s., to distinguish it from the usual Ext-functor on CN (A ) which

we denote by Ext1
CN (A ). We refer to [7, App. A] for details. Thus, for each

pair Z,X ∈ CN (A ), the group Ext1
CN (A ),c.s.(Z,X) is naturally a subgroup of

Ext1
CN (A )(Z,X).

Lemma 2.2. For any N -complexes X,Z ∈ CN (A ), we have

Ext1
CN (A ),c.s.(ΣX,Z) ∼= HomKN (A )(X,Z) = HomCN (A )(X,Z)/ ∼,

where ∼ is chain homotopy.

Proof. Let µ ∈ HomKN (A )(X,Z). It follows from Lemma 2.1 that the canonical

sequence 0→ Z
v→ C(u)

w→ ΣX → 0 is an element of Ext1
CN (A ),c.s.(ΣX,Z). On

the other hand, given an element 0→ Z → Y → ΣX → 0 of Ext1
CN (A ),c.s.(ΣX,

Z). [15, Theorem 2.22] yields a chain map τ : X → Z. If the above sequence
is split, then τ ∼ 0, as claimed. �

3. A left adjoint to the inclusion KN(InjA ) → KN(A )

Throughout this section, we will assume that A is a Grothendieck abelian
category and G ∈ A is a fixed generator. Let KN (InjA ) be the full subcategory
of KN (A ) whose objects are the N -complexes of injectives. There is an obvious
inclusion KN (InjA )→ KN (A ). In this section, we will study its left adjoint.

We begin with some preliminaries.

Lemma 3.1. Every bounded above and acyclic N -complex lies in ⊥KN (InjA ).

Proof. Let X be an acyclic N -complex and E an N -complex of injectives. If
X vanishes in degrees > n, then the chain map X → E factors through the
brutal truncation E6n, the factorization is the obvious.

X : · · · // 0

��

// 0

��

// Xn

��

// Xn−1

��

// · · ·

E6n · · · // 0

��

// 0

��

// En

��

// En−1

��

// · · ·

E : · · · // En+2
// En+1

// En // En−1
// · · ·

Since X → E6n is a chain map, it follows from [14, Lemma 3.3] that it is
null-homotopic. �

The objects in ⊥KN (InjA ) do not have to be bounded above. However, the
following result implies that they do have to be acyclic.

Lemma 3.2. Every object in ⊥KN (InjA ) is acyclic.
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Proof. Let E be an injective cogenerator of the category A . By [16, Lemma
4.4],

HomKN (A )(X,D
t
n+t−1(E)) ∼= HN−t

n (HomA (X,E)), ∀ n, t.
Hence Ht

n(HomA (X,E)) = 0 if and only if Ht
n(X) = 0 for all n, t, as desired.

�

Lemma 3.3. Let f : X → Y be a quasi-isomorphism of N -complexes and E
an N -complex of injectives. If fi is an isomorphism for all i � 0, then the
natural map

Hom(f,E) : HomKN (A )(Y,E) −→ HomKN (A )(X,E)

is an isomorphism.

Proof. Consider the triangle W −→ X
f−→ Y −→ ΣW . Then W is acyclic by

[15, Proposition 3.2]. Also W is homotopy equivalent to a bounded above N -
complex since fi is an isomorphism for all i � 0. Hence Lemma 3.1 implies
that W ∈ ⊥KN (InjA ). The result now follows by applying HomKN (A )(−, E)
to the triangle. �

Lemma 3.3 showed that any chain map X → E factors up to homotopy
through X → Y . Next we consider the factorizations not only up to homotopy
but in the category CN (A ).

Lemma 3.4. Let f : X → Y be a chain map in CN (A ) whose mapping cone
lies in ⊥KN (InjA ). If fi is a monomorphism in each degree i, then the natural
map

Hom(f,E) : HomCN (A )(Y,E)→ HomCN (A )(X,E)

is surjective for any N -complex E of injectives.

Proof. Let h : X → E be a chain map. By Lemma 3.3, there exist a chain map
g : Y → E and a collection of morphisms {si : Xi → Ei+N−1} such that

hi − gifi = dN−1si + dN−2si−1d+ · · ·+ si−(N−1)d
N−1, ∀ i.

Since Ei+N−1 is an injective object in A and fi is a monomorphism, there is
ri : Yi → Ei+N−1 such that rifi = si for all i. Set

g′i = gi + dN−1ri + dN−2ri−1d+ · · ·+ ri−(N−1)d
N−1, ∀ i.

One can check g′ = {g′i}i∈Z is a chain map and h = g′f . �

Next we think about uniqueness of the factorization h = gf in Lemma 3.4.

Lemma 3.5. Assume that g, g′ : Y → E are two chain maps with gf and g′f
homotopic to h, and let {si : Xi → Ei+N−1} be a homotopy with

gifi − g′ifi = dN−1si + dN−2si−1d+ · · ·+ si−(N−1)d
N−1, ∀ i,

where f : X → Y and h : X → E are as in Lemma 3.4. Then there exists a
homotopy {ri : Yi → Ei+N−1} with rf = s and so that

gi − g′i = dN−1ri + dN−2ri−1d+ · · ·+ ri−(N−1)d
N−1, ∀ i.
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Proof. By Lemma 3.3, we have that g ∼ g′. Choose a homotopy {r′i : Yi →
Ei+N−1} connecting g with g′. Then {r′ifi : Xi → Ei+N−1} is a homotopy
connecting gf with g′f as is {si : Xi → Ei+N−1}, which implies that

α =




si−r′ifi
(si−1−r′i−1fi−1)d

...
(si−N+2−r′i−N+2fi−N+2)dN−2



i∈Z

: X → Σ−1E

is a chain map. By Lemma 3.4, α = ρf for some chain map ρ : Y → Σ−1E

with ρi =

 ρi,i+N−1
ρi,i+N−2

...
ρi,i+1

 : Yi → (Σ−1E)i. Therefore {ri = r′i + ρi,i+N−1 : Yi →

Ei+N−1} is a homotopy of g with g′ and s = rf . �

Definition 3.6 ([12]). Let λ be an ordinal and C a category. A sequence of
length λ in C is the following data:

(i) for every ordinal i 6 λ an object Xi ∈ C and
(ii) for every pair of ordinals i and j with i < j 6 λ a morphism f ij : Xi →

Xj .

(iii) If i < j < k 6 λ, then the composite Xi fij−−→ Xj fjk−−→ Xk agrees with
f ik : Xi → Xk.

Lemma 3.7. Suppose that X is a sequence of length λ in CN (A ) and Xj =
colim−−−→i<jX

i for every limit ordinal j. If each of the chain maps Xi → Xi+1 is

a degreewise monomorphism with the mapping cone in ⊥KN (InjA ), then the
mapping cones of all f ij : Xi → Xj belong to ⊥KN (InjA ).

Proof. We prove that the statement is true for all f ij with i 6 j 6 k by
induction on k 6 λ. If k = 0, there is nothing to prove. Suppose the statement
is true for k. We wish to prove it for k + 1. Choose any i < j 6 k + 1. If
i < j 6 k, then the mapping cone on f ij lies in ⊥KN (InjA ) by the inductive
hypothesis. If j = k + 1, then i 6 k and f ij = fk,k+1f ik. Since the mapping
cones on f ik and on fk,k+1 both lie in ⊥KN (InjA ), so does the mapping cone
on f ij = fk,k+1f ik. Next suppose k is a limit ordinal and the mapping cone on
f ij lies in ⊥KN (InjA ) for all i < j < k. It suffices to prove that the induced
map

Hom(f,E) : HomKN (A )(X
k, E)→ HomKN (A )(X

i, E)

is an isomorphism for every E ∈ KN (InjA ). Let us first prove the surjectivity.
Suppose we are given a chain map hi : Xi → E. By induction on j, hi can be

factored in CN (A ) as Xi fij−−→ Xj hj−→ E. Hence hj : Xj → E can be factored

as Xj fj,j+1

−−−−→ Xj+1 hj+1

−−−→ E by Lemma 3.4. For limit ordinals ν, we can obtain
the desired factorization since Xν = colim−−−→i<νX

i. Thus we have a factorization

of hi as Xi fik−−→ Xk hk−→ E in CN (A ), which induces a factorization in KN (A ).
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Now we prove injectivity. Suppose we are given a chain map hi : Xi → E.
By the preceding proof, we can choose an hk : Xk → E such that hkf ik = hi

in CN (A ). Now take any h : Xk → E with hf ik ∼ hi = hkf ik. By choosing
a homotopy {sin : Xi

n → En+N−1} connecting hf ik with hkf ik and induction
on j, we can get a homotopy connecting hf jk with hkf jk with i 6 j 6 k by
Lemma 3.5. This completes the proof. �

Next we will construct sequences to which we will apply Lemma 3.7.

Construction 3.8. Given an object X ∈ CN (A ), an integer n and a monomor-
phism Xn → A in A , we form a chain map of N -complexes f : X → Y =
B(X,n,Xn → A) as follows:

(i) fi : Xi → Yi is the identity map 1Xi : Xi → Xi for all i 6= n, . . . , n−N+1.
(ii) In degrees n, . . . , n − N + 1, each commutative square of the following

diagram

Xn

��

// Yn

��
Xn−1

��

// Yn−1

��
...

��

...

��
Xn−N+1

// Yn−N+1

is just the pushout square

Xn

��

// A

��
Xn−1

��

// Yn−1

��
...

��

...

��
Xn−N+1

// Yn−N+1.

So we have a short exact sequence of N -complexes

0 −→ X
f−→ Y −→ DN

n (A/Xn) −→ 0,

which implies that f is an injective quasi-isomorphism. But the mapping
cone of f in KN (A ) is homotopic to a bounded N -complex and belongs to
⊥KN (InjA ) by Lemma 3.1. Thus f is a suitable building block for construct-
ing chains of N -complexes as in Lemma 3.7.
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In fact, we could specify A, up to noncanonical isomorphism, by giving its
class as an extension in Ext1

A (A/Xn, Xn). Let Q be the coproduct of all the
quotients of the generator G. Set A/Xn = Q(β) be a large coproduct. It
suffices to give a subset Λ ⊆ Ext1

A (Q,Xn) of cardinality β. We denote the
corresponding N -complex Y by B(X,Λ). If Λ = Ext1

A (Q,Xn), we denote the
chain map as X → B(X,n). In this case, the functor Ext1

A (C,−) annihilates
the map Xn → B(X,n)n whenever C is a direct summand of Q.

Now we inductively define a sequence of length ω in CN (A ). At each step,
let the chain map Xi → Xi+1 be Xi → B(Xi, n) for some n depending on i.
The precise recipe is:

(i) X0 = X and X0 → X1 is the chain map X → B(X, 0).
(ii) For an integer i > 0, we define X2i−1 → X2i to be X2i−1 → B(X2i−1, i)

while X2i → X2i+1 is set to be X2i → B(X2i,−i).
(iii) Xω = colim−−−→X

n.

Let fX : X → J(X) be the chain map X → Xω of above. Then fX is a de-
greewise monomorphism since it is the colimit of degreewise monomorphisms.
Let C be a quotient of G. Then either the chain map X2|n|−1 → X2|n| or
the chain map X2|n| → X2|n|+1 induces zero in degree n under the functors
Ext1

A (C,−). Thus fX is annihilated by Ext1
A (C,−) in every degree n depend-

ing on whether n is positive or negative. Furthermore, the mapping cone lies
in ⊥KN (InjA ) by Lemma 3.7.

The following result was proved by Neeman when N = 2 (see [12, Theorem
2.13]).

Theorem 3.9. The natural inclusion i : KN (InjA ) → KN (A ) has a left
adjoint i`. In particular, the category KN (InjA ) has arbitrary coproducts.

Proof. Let X be an arbitrary object of CN (A ). By transfinite induction, we
define a chain of N -complexes Jλ(X) for every ordinal λ. The rule is:

(i) J0(X) = X.
(ii) If Jλ(X) has been defined, then the map Jλ(X) → Jλ+1(X) is just

Jλ(X)→ J(Jλ(X)).
(iii) If λ is a limit ordinal, then Jλ(X) = colim−−−→i<λJ

i(X).

Let α be the regular cardinal of [12, Definition 1.4]. Consider the triangle

W → X → Jα(X)→ ΣW.

Lemma 3.7 implies that W belongs to ⊥KN (InjA ). Since α is an α-filtered
colimit of the ordinals λ < α, it follows from [12, Lemma 1.10] that for each
quotient C of G,

Ext1
A (C, Jα(X)n) = colim−−−→λ<αExt1

A (C, Jλ(X)n).

By construction, the map

Ext1
A (C, Jλ(X)n) = Ext1

A (C, Jλ+1(X)n)
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is zero, and so the colimit vanishes. Thus Ext1
A (C, Jα(X)n) = 0 and Jα(X)n

is injective for all n. Now define i`(X) = Jα(X). It follows from the triangle
and [10, Theorem 9.1.13] that i` is a left adjoint of i.

Finally, given a collection of objects {Xλ |λ ∈ Λ} in KN (InjA ), we can form
the coproduct in KN (A ). Applying i` to this coproduct gives the coproduct
in KN (InjA ). �

4. The µ-compact generation of KN(InjA )

In this section, we show that there exists a regular cardinal µ for which the
homotopy category KN (InjA ) is µ-compactly generated.

Construction 4.1. Choose a regular cardinal µ as in [12, Definition 1.11],
define B ⊆ A to be the full subcategory of A consisting of the objects A
with |HomA (G,A)| < µ. Then B = A µ the full subcategory of µ-presentable
objects in A by [12, Proposition 1.18]. Let X be an object in CN (A ) and F
a full subcategory of subobjects Y ⊆ X with Y ∈ CN (B) ⊆ CN (A ). Assume
F is µ-filtered and its colimit is X. Construct the category L (F , n) whose
objects are subobjects Y of B(X,n) with the following properties:

(i) Y ∩X belongs to F .
(ii) The chain map Y ∩ X → Y is an isomorphism in degrees i 6= n, . . .,

n−N + 1.
(iii) In degree n, we have a monomorphism Yn/Yn ∩ Xn → B(X,n)n/Xn.

Note that B(X,n)n/Xn = Q(β) =
∐

Ext1A (Q,Xn)Q with Q as in Construction

3.8. We require that the monomorphism Yn/Yn ∩ Xn → B(X,n)n/Xn is the
inclusion of a subcoproduct.

(iv) Each commutative square of the following diagram

Yn ∩Xn

��

// Yn

��
Yn−1 ∩Xn−1

��

// Yn−1

��
...

��

...

��
Yn−N+1 ∩Xn−N+1

// Yn−N+1

is a pushout square.
By Construction 3.8 and the construction of the category L (F , n), we have

a commutative diagram of short exact sequences in CN (A ):
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0 // Y ∩X //� _

��

Y � _

��

// Y/Y ∩X

h
��

// 0

0 // X // B(X,n) // DN
n (Q)(|Ext1A (Q,Xn)|) // 0,

where h must be the inclusion of a subcoproduct. In degree n, we have a
diagram

0 // Yn ∩Xn
//

��

Yn

��

// Q(|Λ′|)

h
��

// 0

0 // Xn
// B(X,n)n // Q(|Ext1A (Q,Xn)|) // 0.

The top row of this diagram defines a map ϕ : Λ′ → Ext1
A (Q,Yn ∩Xn) giving

the extension. Since h is an inclusion, the composite

Λ′
ϕ−→ Ext1

A (Q,Yn ∩Xn) −→ Ext1
A (Q,Xn)

is injective. Therefore ϕ is injective and Λ′ is a subset of Ext1
A (Q,Yn ∩Xn).

Lemma 4.2. The objects of the category L (F , n) all belong to CN (B) =
CN (A µ).

Proof. Since Y ∩X belongs to F ⊆ CN (B), all the objects Yi ∩Xi belong to
B. For i 6= n, . . . , n−N + 1, we have Yi = Yi ∩Xi ∈ B. We need to show that
Yn, . . . , Yn−N+1 ∈ B. From the pushout squares

Yn ∩Xn

��

// Yn

��
Yn−1 ∩Xn−1

��

// Yn−1

��
...

��

...

��
Yn−N+1 ∩Xn−N+1

// Yn−N+1,

it follows that Yn−t is a quotient of Yn−t+1⊕(Yn−t∩Xn−t) for t = 1, . . . , N−1.

In Construction 4.1, we saw that Yn is an extension of Q(|Λ′|) by Yn ∩ Xn ∈
B, where Λ′ ⊆ Ext1

A (Q,Yn ∩ Xn). So |Λ′| 6 |Ext1
A (Q,Yn ∩ Xn)| < µ by

[12, Remark 1.17]. But Q is the coproduct of the < α quotients C of the

generator G, it follows that Q(|Λ′|) is a coproduct of < µ objects in B and so
Q(|Λ′|) ∈ B. Thus [12, Proposition 1.15(iii)] implies that Yn ∈ B, and hence
Yn−1, . . . , Yn−N+1 belong to B by [12, Proposition 1.15(ii)]. �

Lemma 4.3. The category L (F , n) is µ-filtered.
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Proof. Since L (F , n) is equivalent to a partially ordered set, we need only show
that every collection of fewer than µ objects in L (F , n) is dominated by an
object of L (F , n). Suppose that we are given a set {Y j | j ∈ J} of < µ objects
in L (F , n). Since the objects Y j ∩X all belong to the µ-filtered category F ,
we may choose a Z ∈ F dominating them. Note that Xn = colim−−−→Xi∈FX

i
n and

Ext1
A (Q,−) commutes with µ-filtered colimits. Hence

Ext1
A (Q,Xn) = colim−−−→Xi∈F Ext1

A (Q,Xi
n).

For any k ∈ Ker(Ext1
A (Q,Zn) → Ext1

A (Q,Xn)), we choose some morphism
Z → Zk in F so that k is annihilated by Ext1

A (Q,Zn)→ Ext1
A (Q,Zkn). Note

that |Ext1
A (Q,Zn)| < µ, there are < µ possible k. Since F is µ-filtered, Zk are

all dominated by some object Z ′ ∈ F . Thus the chain map Z → Z ′ annihilates
all the k, which implies that Im(Ext1

A (Q,Zn)→ Ext1
A (Q,Z ′n)) maps injectively

to Ext1
A (Q,Xn). For each Y j , Y jn is an extension of Q(|Λj |) by Y jn ∩Xn, where

Λj ⊆ Ext1
A (Q,Y jn ∩Xn) that maps injectively to Ext1

A (Q,Xn). We may take
the image of Λj under the composite

Ext1
A (Q,Y jn ∩Xn)→ Ext1

A (Q,Zn)→ Ext1
A (Q,Z ′n).

Since the image of each Λj is contained in Im(Ext1
A (Q,Zn)→ Ext1

A (Q,Z ′n)), so

is the union of the images Λ′=
⋃

Im(Λj). But Im(Ext1
A (Q,Zn)→Ext1

A (Q,Z ′n))

maps injectively to Ext1
A (Q,Xn), so does its subset Λ′. Let Y ′ = B(Z ′,Λ′).

For the objects Y j , Y ′ and B(X,n), we have three extension sequences:

0→ Y j ∩X → Y j → DN
n (Q(|Λj |))→ 0,

0→ Z ′ → Y ′ → DN
n (Q(|Λ′|))→ 0,

0→ X → B(X,n)→ DN
n (Q(|Ext1A (C,Xn)|))→ 0.

Since the extension classes are all compatible, we may choose morphisms of
extensions

0 // Y j ∩X //� _

��

Y j
δj //

fj

��

DN
n (Q(|Λj |)) //

��

0

0 // Z ′ //� _

��

Y ′ //

g

��

DN
n (Q(|Λ′|)) //

��

0

0 // X // B(X,n) // DN
n (Q(|Ext1A (C,Xn)|)) // 0.

For each subobject Y j of B(X,n), we have a monomorphism hj : Y j → B(X,n)
and a commutative diagram in CN (A ):
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0 // Y j ∩X //

��

Y j
δj //

hj

��

DN
n (Q(|Λj |)) //

��

0

0 // X // B(X,n) // DN
n (Q(|Ext1A (C,Xn)|)) // 0.

Note that the chain maps f j and g may be chosen as above, but they are not
unique. Thus there is no reason to expect that hj should equal gf j . But hj−gf j
factors through a chain map DN

n (Q(|Λj |)) → X, so hj − gf j is determined by
a morphism Q(|Λj |) → Xn in A by [14, Lemma 2.2]. Since HomA (Q(|Λj |),−)
commutes with µ-filtered colimits andXn is the µ-filtered colimit of {Xi

n}Xi∈F ,
we choose a morphism Z ′ → Zj in F for each j so that hj−gf j factors through
DN
n (Q(|Λj |)) → Zj ⊆ X. Since there are fewer than µ objects Zj ∈ F , there

is an object Z ′′ ∈ F dominating them. Let W = B(Z ′′,Λ′) and we have

an extension 0 → Z ′′ → W → DN
n (Q(|Λ′|)) → 0 corresponding to the image

of Λ′ ⊆ Ext1
A (Q,Z ′n) under the map Ext1

A (Q,Z ′n) → Ext1
A (Q,Z ′′n). Because

the extension classes are compatible, we construct the following morphisms of
extensions:

0 // Z ′ //

��

Y ′
η //

ρ

��

DN
n (Q(|Λ′|)) // 0

0 // Z ′′
τ //

��

W
η′ //

σ

��

DN
n (Q(|Λ′|)) //

��

0

0 // X
θ // B(X,n) // DN

n (Q(|Ext1A (C,Xn)|)) // 0.

There is no reason to expect g to be equal to σρ. But g − σρ factors through
some ϕ : DN

n (Q(|Λ′|)) → X. Set σ̄ = σ + θϕη′. Then g = σ̄ρ. Now we have

monomorphisms Y j
fj−→ Y ′

ρ−→W
σ̄−→ B(X,n) and hj−gf j = hj− σ̄ρf j factors

through a chain map DN
n (Q(|Λj |))

γj−→ Z ′′ −→ X. Set f̄ j = ρf j + τγjδj , then
σ̄f̄ j = hj for all j ∈ J . Thus the monomorphisms hj all factor through σ̄, and
so the subobject σ̄ : W → B(X,n) belongs to L (F , n). �

Lemma 4.4. B(X,n) is the colimit of its subobjects Y ∈ L (F , n).

Proof. Let Y be an object in Y ∈ L (F , n). We have a monomorphism of
exact sequences:

0 // Y ∩X //

fY

��

Y //

gY

��

DN
n (Q(|Λ′|)) //

hY
��

0

0 // X // B(X,n) // DN
n (Q(|Ext1A (Q,Xn)|)) // 0,
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where hY is the inclusion of a subcoproduct. Since the category L (F , n) is
filtered, the colimit in L (F , n) of the top row is exact. We wish to show
that the colimit of gY is an isomorphism, it suffices to prove that the colimits
of fY and hY are isomorphisms. But fY and hY are monomorphisms, so are
their colimits. It therefore suffices to prove that the colimits of fY and hY are
epimorphisms. Since the category F embeds in the category L (F , n), we can
view a subobject Y ⊆ X as a subobject of B(X,n), where the corresponding
Λ′ ⊆ Ext1

A (Q,Yn) is empty. But the colimit of F maps epimorphically to X
and this epimorphism factors through the colimit of fY . Hence the colimit of fY
is an epimorphism. Take any λ ∈ Ext1

A (Q,Xn). Since Ext1
A (Q,−) commutes

with µ-filtered colimits and Xn is the µ-filtered colimit of {Xi
n}Xi∈F , there

exist a Z ∈ F and an element eλ ∈ Ext1
A (Q,Zn) mapping to λ. Form the

extension 0 → Z → Y → DN
n (Q) → 0 corresponding to eλ. We have a

morphism of extensions

0 // Z //

fY

��

Y //

gY

��

DN
n (Q) //

hY
��

0

0 // X // B(X,n) // DN
n (Q(|Ext1A (Q,Xn)|)) // 0,

where hY is the inclusion of the subcoproduct over the singleton {λ}. Thus
the image of the colimit of the hY contains the coproduct over every singleton
in Ext1

A (Q,Xn), and hence it must be epimorphism. �

Lemma 4.5. If filtered colimits of < µ objects in F belong to F , then filtered
colimits of < µ objects in L (F , n) belong to L (F , n).

Proof. Let Y be an object in L (F , n). We have a monomorphism of exact
sequences

0 // Y ∩X //

fY

��

Y //

gY

��

DN
n (Q(|Λ′|)) //

hY
��

0

0 // X // B(X,n) // DN
n (Q(|Ext1A (Q,Xn)|)) // 0,

where hY is the inclusion of a subcoproduct and Y ∩X ∈ F . If |Λ| < µ and
each Yλ ∩X ∈ F , then a filtered colimit of objects {Y λ ∩X}λ∈Λ belong to F .
Hence the filtered colimit of < µ monomorphisms of short exact sequences as
above is such a monomorphism since filtered colimits are exact, as desired. �

Construction 4.6. By Theorem 3.9, the object i`(X) = Jα(X) can be con-
structed using a single sequence. Let us remember this sequence:

(i) X0 = X.
(ii) Xi+1 = B(Xi, n) for some n depending on i. The precise relation is that

if i = ν +m, where ν is a limit ordinal and m is an integer, then n = −m/2 if
m is even and n = (m+ 1)/2 if m is odd.
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(iii) For limit ordinals j we have Xj = colim−−−→i<jX
i.

Suppose we are given an α-filtered category F of subobjects of X, whose
colimit is X. For every ordinal i, we establish a subcategory Fi of subobjects
of Xi as follows:

(i) F0 = F .
(ii) If n is the integer for which Xi+1 = B(Xi, n), then Fi+1 = L (Fi, n).
(iii) Let j be a limit ordinal. A subobject Y ⊆ Xj belongs to F j if and only

if Y ∩Xi belongs to Fi for all i < j.

Lemma 4.7. Suppose Y ⊆ Xj lies in Fi as the notation in Construction 4.6.
Consider the triangle Σ−1W → Y ∩ X → Y → W , we have W belongs to
⊥KN (InjA ).

Proof. Set Y i = Y ∩Xi. By assumption, Y i+1 ∈ L (Fi, n) and Y i+1 = B(Y ∩
Xi,Λ′) = B(Y i,Λ′) for some subset Λ′ ⊆ Ext1

A (Q,Y in) mapping injectively to
Ext1

A (Q,Xn) by Construction 4.1. For limit ordinals ν, we have

Y ν = Y ∩Xν = colim−−−→i<ν(Y ∩Xi) = colim−−−→i<νY
i.

The lemma now follows from Lemma 3.7 and Construction 3.8. �

Lemma 4.8. Let X be an object of CN (A ) and F ⊆ CN (B) = KN (A µ) a full
subcategory of the subobjects of X. Assume that F is µ-filtered with colimit
X and that filtered colimits of < µ objects in F belong to F . Then the full
subcategory of Fα whose objects are in CN (InjA ) is cofinal.

Proof. Let Y be an object in Fα. We need to produce a morphism Y → Z in
Fα with Z ∈ KN (InjA ). We inductively define a sequence {Zi} of objects in
Fi.

(i) Put Z0 = Y ∩X.
(ii) Assume n is the integer for which Fi+1 = L (Fi, n), and suppose we

have defined Zi ∈ Fi. Choose an object W i ∈ Fi containing Zi and Y ∩Xi.
There exists a morphism W i → V i in Fi annihilating Ker(Ext1

A (Q,W i
n) →

Ext1
A (Q,Xi

n)) by the proof of Lemma 4.3. Let Λ′ = Im(Ext1
A (Q,W i

n) →
Ext1

A (Q,V in)). Then Λ′ maps injectively to Ext1
A (Q,Xi

n). Define Zi+1 =
B(V i,Λ′) ∈ Fi+1. Then Zi+1 is given by a morphism of extensions

0 // V i //

f

��

Zi+1 //

g

��

DN
n (Q(|Λ′|)) //

h
��

0

0 // X // B(X,n) // DN
n (Q(|Ext1A (Q,Xn)|)) // 0.

Note that the monomorphisms f and h are given, and we make a choice of a
compatible g.

(iii) For limit ordinals λ, define Zλ = colim−−−→i<λZ
i. We have a morphism

Zi → Zi+1 that factors as Zi →W i → V i → Zi+1. By construction, the mor-
phism W i → V i kills the kernel of the map ϕ : Ext1

A (Q,W i
n)→ Ext1

A (Q,Xi
n)
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while the morphism V i → Zi+1 kills the image of ϕ. It follows that the com-
posite Zin → Zi+1

n is annihilated by Ext1
A (Q,−) for some suitable n for which

Xi+1 = B(Xi, n) and n occurs between i and i+ω for any limit ordinal i. If we
restrict to limit ordinals, then Ext1

A (Q,−) annihilates Zin → Zjn for any integer
n and any pair i < j of limit ordinals. But Zα is the α-filtered colimit of the
limit ordinals < α and Ext1

A (C,−) commutes with α-filtered colimits for each
quotient C of the generator G. It follows that Ext1

A (C,Zαn ) = 0 for all C and
all n, and hence Zα is an N -complex of injectives. Therefore by construction,
Y = colim−−−→(Y ∩Xi) maps in Fα to Z = colim−−−→Z

i. �

Lemma 4.9. Let i` : KN (A ) → KN (InjA ) be the functor of Theorem 3.9.
Then the objects {i`(S) |S ∈ KN (B)} generate the category KN (InjA ).

Proof. For every nonzero object X ∈ KN (InjA ), we need to produce a nonzero
morphism i`(S)→ X in KN (InjA ) or equivalently a nonzero morphism S → X
in KN (A ). If X is not acyclic, there is a nontrivial amplitude homology group.
Without loss of generality, we may assume Ht

0(X) 6= 0 for some t. Choose a map

G → Zt0(X) that does not factor through BN−t0 (X). Then G → Zt0(X) → X0

extends to a chain map Dt
0(G)→ X that is nonzero in amplitude homology, and

also Dt
0(G) ∈ CN (B). Next suppose X is acyclic. If X 6= 0 in KN (InjA ), then

X is not contractible. So there exists an n such that Z1
n(X) is not injective in

A . Thus there is a quotient C of G and a nonzero element of Ext1
A (C,Z1

n(X)).
But elements of Ext1

A (C,Z1
n(X)) are in a bijection with morphisms D1

n(C)→
X in KN (A ). Therefore we have a nonzero morphism D1

n(C) → X where
D1
n(C) ∈ CN (B), as claimed. �

Let T be a triangulated category with arbitrary coproducts and suspension
functor Σ, α an infinite regular cardinal. The category T is α-compactly
generated if there is a set of objects S such that ΣS = S , satisfying the
conditions:

(G1) an object X ∈ T is zero if T (S,X) = 0 for all S ∈ S ;
(G2) for each family of morphisms {fi : Xi → Yi}i∈I , the induced morphism

T (S,
∐
i∈I

Xi)→ T (S,
∐
i∈I

Yi)

is surjective for all S ∈ S if the morphisms

T (S,Xi)→ T (S, Yi)

are surjective for all i ∈ I and all S ∈ S ;
(G3) for each family of objects {Xi}i∈I of T , each morphism S →

∐
i∈I Xi

factors through S →
∐
i∈J Xi for some subset J ⊆ I with |J | < α.

Theorem 4.10. Let B = A µ the category of µ-presentable objects in A . Then
the objects {i`(S) |S ∈ CN (B)} form a µ-compact generating set in KN (InjA ).

Proof. Suppose we are given a set {Xλ |λ ∈ Λ} of objects in KN (InjA ). Then
the coproduct of these objects in KN (InjA ) is formed by applying the functor
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i` of Theorem 3.9 to the ordinary coproduct in KN (A ) or CN (A ). Set X =∐
λ∈ΛX

λ and the category F as

F ={
∐
λ∈Λ′

Sλ |Λ′ ⊆ Λ with |Λ′|<µ and each Sλ∈CN (B) is a subobject of Xλ}.

Since each object Xλ in CN (A ) is the µ-filtered colimit of its subobjects {S →
Xλ |S ∈ CN (B)}, and the coproduct of the Xλ satisfies∐

λ∈Λ

Xλ = colim−−−→ Λ′⊆Λ
|Λ′|<µ

∐
λ∈Λ′

colim−−−→ Sλ→Xλ
Sλ∈CN (B)

Sλ,

it follows from Lemmas 4.2-4.5 that i`(X) = Xα is the colimit in CN (A )
of the µ-filtered category Fα, and hence any chain map S → i`(X) factors
through some object Y ∈ Fα where S ∈ CN (B). By Lemma 4.7, we have a

triangle Σ−1W −→ Y ∩ X ι−→ Y −→ W with W ∈ ⊥KN (InjA ), and so i`(ι) is
an isomorphism. Thus the chain map S → i`(X) factors as S → i`(Y ∩X)→
i`(X). But Y ∩X ∈ F , it follows that

∐
λ∈Λ′ S

λ ∈ F . We have factored the
chain map as

i`(S)→ i`(
∐
λ∈Λ′

Sλ)→ i`(
∐
λ∈Λ

Xλ)

in KN (InjA ). Now suppose that we are given in KN (InjA ) a vanishing com-
posite

i`(S)
θ−→ i`(

∐
λ∈Λ′

Sλ)
τ−→ i`(

∐
λ∈Λ

Xλ),

where U =
∐
λ∈Λ′ S

λ ∈ F = F0. By Lemma 4.8, in Fα the objects that
belong to CN (InjA ) are cofinal. There exists a chain map U → Y in Fα

with Y in the subcategory. We have a morphism S → i`(S) → i`(Y ) = Y in
KN (InjA ). Choose a representative S → Y in CN (A ). Then the composite
S → Y → i`(X) is null-homotopic. But i`(X) is the µ-filtered colimit of
Fα and S is µ-presentable. There is a chain map Y → Z in Fα so that
the composite S → Y → Z is already null-homotopic. Since i`(Y ∩ X) →
i`(Y ) = Y and i`(Z ∩ X) → i`(Z) are isomorphisms in KN (InjA ), the chain
map S → i`(Y ∩X)→ i`(Z ∩X) is zero in KN (InjA ) for some Z ∈ Fα. The
proof is complete by Lemma 4.9 and [8, Theorem A]. �

5. The compact generation of KN(PrjR)

In this section, we show that the homotopy category KN (PrjR) of N -compl-
exes of projectives is compactly generated whenever R is right coherent.

Let X = Prj(R) (resp. Inj(R), Flat(R)) be the subcategory of projective
(resp. injective, flat) R-modules. We define the homotopy category KN (PrjR),
KN (InjR), KN (FlatR) respectively. We next investigate compactness of the
homotopy category KN (PrjR). The following lemmas will be handy to prove a
couple of little lemmas about chain maps from N -complexes of finitely gener-
ated projective R-modules.
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Lemma 5.1. Let X be an N -complex of finitely generated projective R-modules
and Z an N -complex of flat R-modules. Given a chain map f : X → Z and

some integer j. If fi vanishes for i > j, then the map f factors as X
g→ Y

h→ Z
with Y an N -complex of finitely generated projective R-modules, and Y may be
chosen so that Yi = 0 for i > j.

Proof. Without loss of generality we may assume j = 0. If i > 0, then the
map fi : Xi → Zi vanishes by assumption, and hence factors through Yi = 0.
It therefore suffices to show, by induction, that if we can define a factorization
up to some integer i, then we can extend to i − 1. Consider the following
commutative diagram:

Xi+N−2

gi+N−2

��

dXi+N−2 // Xi+N−3

gi+N−3

��

// · · · // Xi+1

gi+1

��

dXi+1 // Xi

gi
��

dXi // Xi−1

fi−1

��

Yi+N−2

hi+N−2

��

dYi+N−2 // Yi+N−3

hi+N−3

��

// · · · // Yi+1

hi+1

��

dYi+1 // Yi

hi
��

Zi+N−2

dZi+N−2 // Zi+N−3
// · · · // Zi+1

dZi+1 // Zi
dZi // Zi−1.

An easy diagram chase tells us that the maps

Yi+N−1 ⊕ · · · ⊕ Yi+2 ⊕ Yi+1 ⊕Xi


0 1 0 ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 1 0

−dN−1 −dN−2 −dN−3 ··· −d −gi
0 0 0 ··· 0 d


−→

Yi+N−2 ⊕ · · · ⊕ Yi+1 ⊕ Yi ⊕Xi−1
(dN−1hi+N−2,...,d

2hi+1,dhi,fi−1)−→ Zi−1

must compose to zero. Note that Yi+N−1⊕ · · ·⊕Yi+1⊕Xi and Yi+N−2⊕ · · ·⊕
Yi⊕Xi−1 are finitely generated and projective and Zi−1 is flat, it follows from
[11, Corollary 3.3] that there is a factorization of (dN−1hi+N−2, . . . , d

2hi+1, dhi,
fi−1) as

Yi+N−2 ⊕ · · · ⊕ Yi+1 ⊕ Yi ⊕Xi−1
(dN−1,...,d2,d,gi−1)−→ Yi−1

hi−1−→ Zi−1,

where Yi−1 is finitely generated and projective, and the composite

Yi+N−1 ⊕ · · · ⊕ Yi+2 ⊕ Yi+1 ⊕Xi


0 1 0 ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 1 0

−dN−1 −dN−2 −dN−3 ··· −d −gi
0 0 0 ··· 0 d


−→

Yi+N−2 ⊕ · · · ⊕ Yi+1 ⊕ Yi ⊕Xi−1
(dN−1,dN−2,...,d,gi−1)−→ Yi−1

vanishes. This defines for us the maps gi−1, hi−1 and dYi in the diagram



640 Z. XIE AND X. YANG

Xi+1

��

// Xi

gi
��

dXi // Xi−1

gi−1

��
Yi+1

��

// Yi

hi
��

dYi // Yi−1

hi−1

��
Zi+1

// Zi
dZi // Zi−1.

Then the above diagram is commutative, hi−1gi−1 = fi−1 and Y is an N -
complex. �

Lemma 5.2. Let S be the full subcategory of Prj(R) consisting of free modules
of finite rank. Then each X ∈ KN (PrjR) is filtered by bounded above N -
complexes in S .

Proof. Let U be the full subcategory of KN (PrjR) consisting of bounded above
N -complexes in S . Given X ∈ KN (PrjR), we fix for each component Xn an
S -filtration. We will construct by induction a U -filtration (Xα |α 6 σ) of X
such that for each α < σ

(1) Xα+1/Xα is bounded above,
(2) Xα

n ∈ Prj(R) and Xα+1
n /Xα

n ∈ S for all n.
To construct the filtration, we put X0 = 0 and Xα =

⋃
γ<αX

γ for limit

ordinals α 6 σ. For non-limit steps, assume we have constructed Xα $ X and
we take an integer n and a submodule W ⊆ Xn with |W | < ℵ0 such that W "
Xα
n . Then we put Xα+1

m = Xα
m for m > n. Note that (W +Xα

n )/Xα
n ⊆ Xn/X

α
n

and |(W + Xα
n )/Xα

n | < ℵ0, it follows from [13, Corollary 2.7] that there is
Xα+1
n ∈ Prj(R) such that W+Xα

n ⊆ Xα+1
n and |Xα+1

n /Xα
n | < ℵ0. Further note

that, up to isomorphism, Xα+1
n /Xα

n ∈ S . For m < n we proceed by induction.
Suppose we have already constructed Xα+1

m+1 such that Xα+1
m+1/X

α
m+1 ∈ S up

to isomorphism. Then there exists a submodule W ′ ⊆ Xα+1
m+1 with |W ′| < ℵ0

such that Xα+1
m+1 = Xα

m+1 + W ′. But |dXm+1(W ′)| < ℵ0, we can again use

[13, Corollary 2.7] to find Xα+1
m ∈ Prj(R) such that Xα

m + dXm+1(W ′) ⊆ Xα+1
m

and Xα+1
m /Xα

m is isomorphic to a module from S . This finishes the induction.
It is easy to check that Xα+1 ⊆ X is a subobject and Xα+1/Xα is isomorphic
to an object of U . This shows our claim. �

Lemma 5.3. Suppose that Z is an N -complex of flat R-modules. Then Z is
pure acyclic if and only if Z ∈ KN (PrjR)⊥ ⊆ KN (FlatR).

Proof. “If” part. Let X be a pure projective R-module. Then by [16, Lemma
4.4], 0 = HomKN (R)(D

t
n(X), Z) ∼= Ht

n(HomR(X,Z)) for all n and t. Therefore
HomR(X,Z) is acyclic and hence Z is pure acyclic.

“Only if” part. Let Z be a pure acyclic N -complex in CN (FlatR). Consider
the full subcategory R ⊆ KN (FlatR) defined by

ob(R) = {X ∈ KN (PrjR) |HomKN (R)(Σ
nX,Z) = 0, ∀ n > 0}.
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If X ∈ ob(R), then clearly ΣX ∈ ob(R). Next we show ΩX ∈ R. Given
a chain map u in HomKN (R)(Σ

n(ΩX), Z) ∼= HomKN (R)(ΩX,Ω
nZ). If n =

0, then HomKN (R)(ΩX,Z) ∼= HomKN (R)(ΣX,Z) = 0 since φ : ΩX → ΣX

with φn =

 1 0 0 ··· 0 0
d 1 0 ··· 0 0
...

...
...

...
...

...
dN−2 dN−3 dN−4 ··· d 1

 : (ΩX)n → (ΣX)n+N is an isomorphism.

Assume n > 1. We have a canonical exact sequence 0 → Ωn+1Z → Fu →
ΩX → 0. Then by Lemma 2.2, Ext1

CN (R)(X,Ω
nZ) ∼= Ext1

CN (R),c.s.(X,Ω
nZ) ∼=

HomKN (R)(Σ
n−1X,Z) = 0, it follows that Ext1

CN (R)(ΩX,Ω
n+1Z) = 0, and

hence u ∼ 0 by [15, Proposition 2.14]. Thus the category R is a pretriangulated
subcategory, and is closed in KN (PrjR) under coproducts. We wish to show
that KN (PrjR) ⊆ R. By Lemma 5.2 it suffices to prove that U ⊆ R, where U
is the set of bounded above N -complexes with components finitely generated
projective.

For any object X ∈ U and any morphism u : X → Z, we want to produce
a null homotopy {sn : Xn → Zn+N−1} by induction on n. Since X ∈ U , we
know that Xi = 0 for i � 0. We may choose an integer j so that Xi = 0 and
define si = 0 for i > j. Suppose si has been defined for i > k. Suppose further
that ui+N−2 = dN−1si+N−2 + dN−2si+N−3d + · · · + si−1d

N−1 for i > k. If
Xi+N−2 = 0 for i > k, then this identity is automatic. We will show that we
can extend the homotopy. Precisely, we can define ri : Xi → Zi+N−1 for all
i > k − 1, so that

(i) ri = si for all i > k +N − 1.
(ii) ui+N−2 = dN−1ri+N−2 +dN−2ri+N−3d+ · · ·+ri−1d

N−1 for all i > k−1.
Note that we cannot guarantee that sk+t = rk+t for t = 0, 1, . . . , N − 2. We
need to modify sk to extend the homotopy. But for i > k + N − 2 the si are
stable. It remains to prove the induction step. Suppose that for some k, we
have defined si for all i > k, in such a way that

ui+N−2 = dN−1si+N−2 + dN−2si+N−3d+ · · ·+ si−1d
N−1, ∀ i > k.

Extend s to all i by defining si = 0 for all i < k. Let ū : X → Z be the
chain map given by ūi = ui − dN−1si − dN−2si−1 − · · · − si−N+1d

N−1. We
have a chain map ū : X → Z. In the induction step we replace ui by ūi, and
ri by r̄i = ri − si. The induction assertion becomes that there exist maps
r̄i : Xi → Zi+N−1 for all i > k − 1, so that

(i′) r̄i = 0 for all i > k +N − 1.
(ii′) ūi+N−2 = dN−1r̄i+N−2 +dN−2r̄i+N−3d+· · ·+ r̄i−1d

N−1 for all i > k−1.
Now observe that ū : X → Z is a chain map from an object X in U . Fur-
thermore ūi = 0 for all i > k + N − 2. By Lemma 5.1, we can factor ū as

X
v→ Y

w→ Z, where Y ∈ U and Yi = 0 for i > k + N − 2. The asser-
tions (i′) and (ii′) above would immediately follow if we could produce maps
r̃i : Yi → Zi+N−1 for all i > k − 1, so that

(i′′) r̃i = 0 for all i > k +N − 1.
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(ii′′) wi+N−2 = dN−1r̃i+N−2+dN−2r̃i+N−3d+· · ·+r̃i−1d
N−1 for all i > k−1.

Next note that Yi = 0 for i > k+N−2, which means that (i′′) has no choice but
to be true. And furthermore the equality in (ii′′) is also immediate for i > k.
There is only one map from Yi+N−2 = 0 to Zi+N−2. Therefore (i′′) and (ii′′)
come down to showing that there exist maps r̃k+N−2, . . . , r̃k, r̃k−1, satisfying
the single identity wk+N−2 = dN−1r̃k+N−2 + dN−2r̃k+N−3d+ · · ·+ r̃k−1d

N−1.
Next we prove the existence of the maps r̃k+N−2, . . . , r̃k, r̃k−1. Consider the
chain map w : Y → Z:

· · · // 0

��

// Yk+N−2

wk+N−2

��

dYk+N−2// Yk+N−3

wk+N−3

��

// · · · // Yk

wk
��

dYk // Yk−1

wk−1

��

// · · ·

· · · // Zk+N−1

dZk+N−1// Zk+N−2

dZk+N−2// Zk+N−3
// · · · // Zk

dZk // Zk−1
// · · ·

We have the following commutative diagram

Yk+N−2

wk+N−2

��

dY // Yk+N−3

wk+N−3

��

// · · · // Yk

wk

��

dY// Yk−1

wk−1

��
Zk+N−2

dZ // Zk+N−3
// · · · // Zk

dZ// Zk−1
dZ// B1

k−2(Z)
dZ // B2

k−3(Z) // · · · // BN−1
k−N (Z) ⊂ Zk−N .

This yields a vanishing composite Yk+N−2 → Yk−1 → B1
k−2(Z) with both

Yk+N−2, Yk−1 finitely generated and projective and B1
k−2(Z) flat. It allows us

to factor the map Yk−1 → B1
k−2(Z) as Yk−1 → Yk−2 → B1

k−2(Z) with Yk−2

finitely generated and projective by [11, Corollary 3.3], and in such a way that
the composite Yk+N−2 → Yk−1 → Yk−2 vanishes. We also have a vanish-
ing composite Yk+N−3 → Yk−2 → B2

k−3(Z) with both Yk+N−3, Yk−2 finitely

generated and projective and B2
k−3(Z) flat. It allows us to factor the map

Yk−2 → B2
k−3(Z) as Yk−2 → Yk−3 → B2

k−3(Z) with Yk−3 finitely generated
and projective by [11, Corollary 3.3], and in such a way that the composite
Yk+N−3 → Yk−2 → Yk−3 vanishes. Continuing this process, we have a van-
ishing composite Yk → Yk−N+1 → BN−1

k−N (Z) with both Yk, Yk−N+1 finitely

generated and projective and BN−1
k−N (Z) flat. It allows us to factor the map

Yk−N+1 → BN−1
k−N (Z) as Yk−N+1 → Yk−N → BN−1

k−N (Z) with Yk−N finitely
generated and projective by [11, Corollary 3.3], and in such a way that the
composite Yk → Yk−N+1 → Yk−N vanishes. In other words we can form a
commutative diagram

Yk+N−2

wk+N−2

��

dY // · · · // Yk

wk

��

dY // Yk−1

wk−1

��

// Yk−2

w̄k−2

��

// Yk−3

w̄k−3

��

// · · · // Yk−N

w̄k−N
��

// 0

��
Zk+N−2

dZ // · · · // Zk
dZ // Zk−1

// B1
k−2(Z)

dZ // B2
k−3(Z) // · · · // BN−1

k−N (Z) // Zk−N−1,

where the horizontal any N -consecutive composites vanish. We deduce a chain
map of N -complexes

· · · // 0

��

// Yk+N−2

wk+N−2

��

dY // · · · // Yk

wk
��

dY // Yk−1

wk−1

��

// Yk−2

wk−2

��

// Yk−3

wk−3

��

// · · · // Yk−N

wk−N
��

// 0

��

// · · ·

· · · // Zk+N−1
dZ // Zk+N−2

dZ // · · · // Zk
dZ // Zk−1

// Zk−2
dZ // Zk−3

// · · · // Zk−N // Zk−N−1
// · · · .
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Then [16, Lemma 5.2] implies that this chain map is null homotopic. Therefore
we have defined r̃k+N−2, . . . , r̃k, r̃k−1, such that

wk+N−2 = dN−1r̃k+N−2 + dN−2r̃k+N−3d+ · · ·+ r̃k−1d
N−1.

This completes the induction. �

The following result was proved by Neeman whenN = 2 (see [11, Proposition
7.14]).

Theorem 5.4. Let R be right coherent. Then the homotopy category KN (PrjR)
is compactly generated.

Proof. Let A be a finitely presented R-module. Then [16, Proposition 3.4]
yields a quasi-isomorphism Dt

n(A) → ptnA with ptnA a bounded below N -
complex in Prj(R) for all n, t, and each N -complex ptnA is a compact object in
KN (PrjR) by [16, Lemma 5.5]. It remains to show that G = {ptnA |A ∈ R-Mod
is finitely presented} is a set of generators. Suppose that X in KN (PrjR) has
HomKN (PrjR)(G,X) = 0 for every G ∈ G . We show X ∼= 0 in KN (PrjR).

First 0 = HomKN (PrjR)(p
t
nR,X) ∼= Ht

n(HomR(R,X)) ∼= Ht
n(X) for all n and

t. So X is acyclic. Again by [16, Lemma 5.5], for any finitely presented left
R-module A,

0 = HomKN (PrjR)(p
t
nA,X) ∼= Ht

n(HomR(A,X)), ∀ n, t.

Then [4, Theorem 6.4] implies that 0→ Ztn(X)→ Xn → ZN−tn−t (X)→ 0 is pure

and Ztn(X) is flat for all n, t. Thus Ztn(X) is projective for all n, t by Lemma
5.3. This implies that X is a projective N -complex by the dual of [1, Theorem
4.5], and hence X ∼= 0 in KN (PrjR), as desired. �
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