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THE HOMOTOPY CATEGORIES OF N-COMPLEXES OF
INJECTIVES AND PROJECTIVES

ZONGYANG XIE AND XIAOYAN YANG

ABSTRACT. We investigate the homotopy category K (Inj<) of N-comp-
lexes of injectives in a Grothendieck abelian category .o/ not necessarily
locally noetherian, and prove that the inclusion K(Inje/) — K(</) has
a left adjoint and Ky (Inj<) is well generated. We also show that the
homotopy category Kn (PrjR) of N-complexes of projectives is compactly
generated whenever R is right coherent.

1. Introduction

Homological algebra mostly studies complexes, having a differential d sat-
isfying d?> = 0. It is natural to ask why d> = 0 and not, say, d> = 0. The
idea to investigate complexes with a differential d such that d¥ = 0 where
N > 3 was introduced by Kapranov [6] and there he hinted to their possible
connections to quantum theories. Since then many papers have appeared on
the subject, many of them studying their interesting homology and indicating
some possible applications of N-complexes for certain nonassociative algebras.
In 2015, Yang and Ding [15] provided an effective construction of left and
right triangles, and proved that the homotopy category and the derived cate-
gory of N-complexes over an abelian category are pretriangulated categories.
Iyama, Kato and Miyachi [3] proved that the homotopy category Ky (%) of
N-complexes of an additive category £ is a triangulated category.

Krause [9] studied the homotopy category K(Inj«/) of complexes (N = 2) of
injectives in a locally noetherian Grothendieck abelian category <. Because &
is locally noetherian, arbitrary direct sums of injectives are injective, and hence
the category K(Inj«?) has coproducts. It turns out that K(Inj<?) is compactly
generated. Neeman [12] studied this further in the nonnoetherian case. He
proved that for a Grothendieck abelian category &7, the category K(Inj</) has
coproducts and is well generated. The current paper considers the homotopy
category Ky (Injo) of N-complexes of injectives, we prove that:
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Theorem A. Let o/ be a Grothendieck abelian category not necessarily locally
noetherian.

(1) The inclusion i : Kn(Injo?) — Kn (<) has a left adjoint iy. Therefore,
the homotopy category Kn(Inj<?) has arbitrary coproducts.

(2) There is a regular cardinal p for which the category Ky (Injo?) is p-
compactly generated.

Jogensen [5] studied the analogue where injectives are replaced by projec-
tives. Since Grothendieck abelian categories rarely have enough projectives,
Jogensen’s results all assumed that he was working over a ring. Under suit-
able noetherian hypotheses, he proved an analogue of Krause’s theorem: the
homotopy category K(PrjR) is compactly generated. Afterwards, the homo-
topy category of flat R-modules came into play by Neeman [11]. Among other
things, he showed that IC(PrjR) is compactly generated if R is right coherent
which gives a generalization of result of [5]. We have the following result for
the homotopy category Ky (PrjR) of N-complexes of projectives.

Theorem B. Let R be a right coherent ring. Then the homotopy category
Kn(PrjR) of N-complexes of projectives is compactly generated.

2. Preliminaries and basic facts

This section is devoted to recalling some notions and basic consequences for
use throughout this paper. For terminology we shall follow [2] and [3].

N-complexes. An N-complex X in an abelian category &7 is a sequence of
objects in &7
X X X X

satisfying dV = 0. That is, composing any N-consecutive morphisms gives
0. So a 2-complex is a chain complex in the usual sense. A chain map or
simply map f : X — Y of N-complexes is a collection of morphisms f, :
X, — Y, making all the rectangles commute. In this way we get a category of
N-complexes, denoted by Cn (7).

For an N-complex X, there are N — 1 choices for homology. Indeed for
t=1,...,N, we define

Z%(X) = ker(dn,(t,l) R dn_1dn) and B;(X) = Im(dn+1dn+2 cee dn+t)~

In particular, we have Z.(X) = kerd,, ZY(X) = X,, and B} (X) = Imd,; 1,
BY(X) = 0. We also define H! (X) = Z! (X)/BY~*(X) the amplitude homol-
ogy objects of X for t = 1,..., N — 1. We say X is acyclic if H,(X) = 0 for all
n and t.

Given an object A of &, we define N-complexes D! (A) for t =1,..., N as
follows. D! (A) consists of A in degrees n,n —1,...,n — (t — 1), all joined by
identity morphisms, and 0 in every other degree.



THE HOMOTOPY CATEGORIES OF N-COMPLEXES 625

Two chain maps f,g : X — Y of N-complexes are called chain homotopic, or
simply homotopic if there exists a collection of morphisms {s, : X,, = Y, n_1}
such that

9n — fn = dN_lsn + dN_23n71d+ i sn—(N—l)dN_l
N—1
= AN, dl, Y on,

i=0
If f and g are homotopic, then we write f ~ g. We call f null homotopic if
f ~ 0. There exists an additive category Ky (<), called the homotopy category
of N-complexes, whose objects are the same as those of Cy(2) and whose Hom
sets are the ~ equivalence classes of Hom sets in Cx (/). An isomorphism in
Kn () is called a homotopy equivalence.

The homotopy category Ky (7). Let (X,dX), (Y,d¥) be objects and u :
X — Y a morphism in Cy (). Then the mapping cone C(u) of u is given as

d u 000
0 —d 1--00

Clu)y =Y, ® (2X),, d°™ =

0—-d¥"20--01
0—-d¥"to.-00

0 1 0 - 0 0

_ _ “10(u : : : o
ST = (2T ) @ Xy, d¥ W= o 5 i

_gN-1 _gN=2 _gN-=3 . _g.u

0 0 0 o 0 d

where (XX), = X,, 1 @+ ® X,,_(y-1) and YY)y =Yon 1@ B Y
with

-d 1000 0 1 0 -« 0 0

d=X : Lo dz*ly _ : : oo
= : RO = : : : ool
—dN-200---01 0 0 o - 0 1
—d¥-100.. 00 _gN-1 _gN-2 _gN-3 2 4

We say a diagram in Ky () is a distinguished triangle if it is isomorphic to
a diagram
X -5Y 50 55X

1
S 010
arising from a chain map u: X — Y, where v = [] and w = [: Do :] .
0 001
Lemma 2.1 ([15]). Letu € Home, (o) (X, Z). Then the following are equivalent:
(1) w is null homotopic;

(2) The canonical exact sequence 0 — Z = C(u) = BX — 0 splits.

There is more structure on Cy (%) which we will need. Namely, instead of
all short exact sequences 0 - X — Y — Z — 0 of N-complexes, we sometimes
consider only the sequences for which 0 — X,, — Y,, — Z,, — 0 splits in &
for each n € Z. These exact sequences make Cy(&7) an exact category in the
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sense of [7, App. A], with the componentwise split exact structure, and allow
us to define a corresponding variant of the Yoneda Ext which we denote by
ExtéN(d)yc_s., to distinguish it from the usual Ext-functor on Cy (&) which

we denote by ExtéN(d). We refer to [7, App. A] for details. Thus, for each
pair Z, X € Cny(&7), the group ExtéN(d)7c_S.(Z, X) is naturally a subgroup of
Exte, () (2, X).-

Lemma 2.2. For any N-complexes X,Z € Cn (), we have
EXt, (o) .e.s.(5X, Z) = Homy (i) (X, Z) = Home, (o) (X, Z)/ ~,
where ~ is chain homotopy.

Proof. Let p € Homg (o) (X, Z). It follows from Lemma 2.1 that the canonical
sequence 0 — Z % C(u) = X — 01is an element of ExtéN(d)_’C.s_(ZX, Z). On
the other hand, given an element 0 = Z — Y — XX — 0 of ExtéN(m)&sh(EX,

Z). [15, Theorem 2.22] yields a chain map 7 : X — Z. If the above sequence
is split, then 7 ~ 0, as claimed. (|

3. A left adjoint to the inclusion Kn(Injo) — Kn (<)

Throughout this section, we will assume that o/ is a Grothendieck abelian
category and G € « is a fixed generator. Let K (Inj<?) be the full subcategory
of K () whose objects are the N-complexes of injectives. There is an obvious
inclusion Ky (Inje/) — Kn (7). In this section, we will study its left adjoint.

We begin with some preliminaries.

Lemma 3.1. Every bounded above and acyclic N -complex lies in ~Kx (Inj.o?).

Proof. Let X be an acyclic N-complex and E an N-complex of injectives. If
X vanishes in degrees > n, then the chain map X — FE factors through the
brutal truncation Fg,, the factorization is the obvious.

X 0 0 Xy —= Xy —
Eén 0 0 E, Ey, 1 ——--
E:  .—FE, 2—>F 1 —FE, —F, 1 —> -

Since X — Eg, is a chain map, it follows from [14, Lemma 3.3] that it is
null-homotopic. (I

The objects in +X v (Inj</) do not have to be bounded above. However, the
following result implies that they do have to be acyclic.

Lemma 3.2. Every object in Ky (Inj<?) is acyclic.
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Proof. Let E be an injective cogenerator of the category 7. By [16, Lemma
44],
Homy, (o) (X, Dl 1 (E)) 2 HY ' (Homy (X, E)), ¥ n,t.
Hence H!,(Hom (X, E)) = 0 if and only if H (X) = 0 for all n, ¢, as desired.
U

Lemma 3.3. Let f : X — Y be a quasi-isomorphism of N-complexes and E
an N-complex of injectives. If f; is an isomorphism for all i > 0, then the
natural map

Hom(f, E) : Homg (o) (Y, E) — Homy () (X, E)
is an isomorphism.
Proof. Consider the triangle W — X LY & SW. Then W is acyclic by
[15, Proposition 3.2]. Also W is homotopy equivalent to a bounded above N-
complex since f; is an isomorphism for all 7 > 0. Hence Lemma 3.1 implies

that W € Ky (Inj<?). The result now follows by applying Homy (o) (—, E)
to the triangle. (|

Lemma 3.3 showed that any chain map X — FE factors up to homotopy
through X — Y. Next we consider the factorizations not only up to homotopy
but in the category Cy ().

Lemma 3.4. Let f: X — Y be a chain map in Cn (<) whose mapping cone
lies in Ky (Inj/). If fi is a monomorphism in each degree i, then the natural
map

Hom(f, E) : Home (o) (Y, E) — Home () (X, E)
is surjective for any N-complex E of injectives.

Proof. Let h : X — E be a chain map. By Lemma 3.3, there exist a chain map
g:Y — FE and a collection of morphisms {s; : X; — E;yn_1} such that

hi - ngz = dNilsi + dN72S,L'_1d+ R Si_(N_l)dNil, Y i.

Since F;4+n—1 is an injective object in 7 and f; is a monomorphism, there is
r; 0 Y; = E;y n—1 such that r; f; = s; for all 4. Set

gi=gi+d" tri+dV Priqd+ i (vonydV T, Vo
One can check ¢’ = {¢.}icz is a chain map and h = ¢'f. O
Next we think about uniqueness of the factorization h = gf in Lemma 3.4.

Lemma 3.5. Assume that g,g' :' Y — E are two chain maps with gf and g'f
homotopic to h, and let {s; : X; — E;xn_1} be a homotopy with

gifi—gifi=d" lsi+dV Psiid+ -+ s vond" Y Vo,

where f: X — Y and h : X — E are as in Lemma 3.4. Then there exists a
homotopy {r; : Y; = E;xn_1} with rf = s and so that

gi—gi=d" i +dV e qd+ -+ (vend™ T VL
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Proof. By Lemma 3.3, we have that g ~ ¢’. Choose a homotopy {r; : Y; —
Eitn-1} connecting g with ¢’. Then {r.f; : X; — F;1ny_1} is a homotopy
connecting gf with ¢'f asis {s; : X; = F;1n_1}, which implies that

si—1ifi
(si—1=7i_y fi—1)d .
o= . X —>3YXF
(si-N42=ri_nyafi-nt2)d" 21/ oy

is a chain map. By Lemma 3.4, a = pf for some chain map p: Y — X7'F

Pi it N—1
Pi it N—2
with p; = : Y, — (X7'E);. Therefore {r; = r} + piiyn—1:Yi =
Pi,;+1
E;in-1} is a homotopy of g with ¢’ and s =rf. O

Definition 3.6 ([12]). Let A be an ordinal and € a category. A sequence of
length A in % is the following data:

(i) for every ordinal ¢ < A an object X; € ¥ and

(ii) for every pair of ordinals i and j with ¢ < j < A a morphism f9 Xt

X7,
opid o pik
(iii) If i < j < k < A, then the composite X* I7 xi I x agrees with
fik X XF

Lemma 3.7. Suppose that X is a sequence of length X in Cn (%) and X7 =
colim; ;X for every limit ordinal j. If each of the chain maps X' — X1 is
a degreewise monomorphism with the mapping cone in Ky (Inj<?), then the
mapping cones of all fi9: X — X7 belong to Ky (Inje).

Proof. We prove that the statement is true for all f¥ with i < j < k by
induction on k < A. If £ = 0, there is nothing to prove. Suppose the statement
is true for k. We wish to prove it for k£ + 1. Choose any ¢« < j < k+ 1. If
i < j <k, then the mapping cone on f lies in */Ky(Inje’) by the inductive
hypothesis. If j = k + 1, then i < k and f7 = f&++1 %  Since the mapping
cones on f%* and on f**+1 both lie in +X v (Inj</), so does the mapping cone
on fi = fkk+1 ik Next suppose k is a limit ordinal and the mapping cone on
f4 lies in Ky (Inje?) for all i < j < k. It suffices to prove that the induced
map
Hom(f, E) : Homy (o) (X*, E) — Homy (o) (X", E)

is an isomorphism for every E € Ky (Injo/). Let us first prove the surjectivity.
Suppose we are given a chain map h' : X* — E. By induction on j, h* can be

factored in Cy (&) as X° % xi ™y B Hence b/ : X7 — E can be factored

TR , j+1
as X7 L xitt g by Lemma 3.4. For limit ordinals v, we can obtain
the desired factorization since X = colim;«, X"*. Thus we have a factorization

of hi as X1 L X* 5 pin Cn (&), which induces a factorization in KCn (7).
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Now we prove injectivity. Suppose we are given a chain map h’ : X’ — E.
By the preceding proof, we can choose an h¥ : X* — E such that hF fi* = h?
in Cy (7). Now take any h : X¥ — E with hf* ~ h' = h¥ fik. By choosing
a homotopy {s! : X! — E,,n_1} connecting hf* with h* f%* and induction
on j, we can get a homotopy connecting hf7* with h*f7* with i < j < k by
Lemma 3.5. This completes the proof. ([

Next we will construct sequences to which we will apply Lemma 3.7.

Construction 3.8. Given an object X € Cy (&), an integer n and a monomor-
phism X,, -+ A in &/, we form a chain map of N-complexes f : X — Y =
B(X,n, X, — A) as follows:
(i) fi : X; — Y; is the identity map 1x, : X; — X, foralli #n,...,n—N+1.
(ii) In degrees n,...,n — N + 1, each commutative square of the following
diagram

X, —Y,

i i

Xn—l I Yn—l

’ ’

is just the pushout square

.

Xn-Nt1 —> Y, Ni1

So we have a short exact sequence of N-complexes
0— XLy 5 DNA/X,) =0,

which implies that f is an injective quasi-isomorphism. But the mapping
cone of f in Ky(&7) is homotopic to a bounded N-complex and belongs to
+Kn(Inje/) by Lemma 3.1. Thus f is a suitable building block for construct-
ing chains of N-complexes as in Lemma 3.7.
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In fact, we could specify A, up to noncanonical isomorphism, by giving its
class as an extension in Extl, (4/X,, X,). Let Q be the coproduct of all the
quotients of the generator G. Set A/X, = Q) be a large coproduct. It
suffices to give a subset A C Extl,(Q,X,,) of cardinality 5. We denote the
corresponding N-complex Y by B(X,A). If A = Ext.,(Q, X,,), we denote the
chain map as X — B(X,n). In this case, the functor Ext’, (C, —) annihilates
the map X,, — B(X,n), whenever C is a direct summand of Q.

Now we inductively define a sequence of length w in Cn (7). At each step,
let the chain map X — X! be X — B(X"?,n) for some n depending on i.
The precise recipe is:

(i) X° = X and X° — X! is the chain map X — B(X,0).

(ii) For an integer i > 0, we define X?*~1 — X2 to be X?~1 — B(X?~1 )
while X% — X2+ is set to be X2 — B(X?, —i).

(iif) X* = colimX™.

Let fx : X — J(X) be the chain map X — X“ of above. Then fx is a de-
greewise monomorphism since it is the colimit of degreewise monomorphisms.
Let C' be a quotient of G. Then either the chain map X2*I=1 — X2Inl or
the chain map X?2" — X271 induces zero in degree n under the functors
Extl,(C,—). Thus fx is annihilated by Ext!,(C, —) in every degree n depend-
ing on whether n is positive or negative. Furthermore, the mapping cone lies
in 1y (Inj«/) by Lemma 3.7.

The following result was proved by Neeman when N = 2 (see [12, Theorem
2.13]).

Theorem 3.9. The natural inclusion i : Ky(Injo/) — Kny(&) has a left
adjoint ip. In particular, the category Ky (Inje?) has arbitrary coproducts.

Proof. Let X be an arbitrary object of Cy(&7). By transfinite induction, we
define a chain of N-complexes J*(X) for every ordinal A\. The rule is:

(i) J°(X) = X.

(i) If J*(X) has been defined, then the map J*(X) — J*1(X) is just
JMNX) = J(JMX)).

(iii) If A is a limit ordinal, then J(X) = coling; <xJ* (X).
Let « be the regular cardinal of [12, Definition 1.4]. Consider the triangle

W—-X—JYX) - EW.

Lemma 3.7 implies that W belongs to *Kx(Inj<). Since « is an a-filtered
colimit of the ordinals A < «, it follows from [12, Lemma 1.10] that for each
quotient C of G,

Extl, (C,J*(X),) = colimy<oExtl, (C, J*(X),).
By construction, the map

Ext!, (C, JNX),) = Extl, (C, JA*1(X),)
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is zero, and so the colimit vanishes. Thus Ext’,(C, J*(X),) = 0 and J*(X),
is injective for all n. Now define iy(X) = J*(X). It follows from the triangle
and [10, Theorem 9.1.13] that i, is a left adjoint of 4.

Finally, given a collection of objects {X* | A € A} in Ky (Inje?), we can form

the coproduct in Ky (<7). Applying iy to this coproduct gives the coproduct
in Kny(Injo). d

4. The p-compact generation of ICn (Inj<?)

In this section, we show that there exists a regular cardinal y for which the
homotopy category Ky (Inj<?) is p-compactly generated.

Construction 4.1. Choose a regular cardinal p as in [12, Definition 1.11],
define 8 C o/ to be the full subcategory of &7 consisting of the objects A
with |Hom (G, A)| < p. Then # = &7/* the full subcategory of u-presentable
objects in &7 by [12, Proposition 1.18]. Let X be an object in Cy (&) and %
a full subcategory of subobjects Y C X with Y € Cn (%) C Cn(&). Assume
Z is p-filtered and its colimit is X. Construct the category £ (%#,n) whose
objects are subobjects Y of B(X,n) with the following properties:

(i) Y N X belongs to .Z.

(ii) The chain map Y N X — Y is an isomorphism in degrees i # n,...,
n—N+1.

(iii) In degree m, we have a monomorphism Y;,/Y, N X,, — B(X,n),/X,.
Note that B(X,n),/X, = Q¥ = HExt}z/(Q,XTL) @ with @ as in Construction
3.8. We require that the monomorphism Y, /Y, N X,, — B(X,n),/X, is the
inclusion of a subcoproduct.

(iv) Each commutative square of the following diagram

Y, NnX, Y,

i i

Ynfl N anl E—— Ynfl

’ ’

]

Yo Ny1NXp N1 —— Yo Ny

is a pushout square.
By Construction 3.8 and the construction of the category .Z(%#,n), we have
a commutative diagram of short exact sequences in Cn ():



632 Z. XIE AND X. YANG

0 Y nX Y. Y/YNX ——>0
! ;
0 X B(X,n) — DN(Q)(Bxts (@.Xa)) 5 0,

where h must be the inclusion of a subcoproduct. In degree n, we have a
diagram

04)5/% an Yn Q(‘A/D O
| | )
0 X, B(X,n), — QUExti (Q.Xn))) = 0.

The top row of this diagram defines a map ¢ : A’ — Ext’, (Q,Y,, N X,,) giving
the extension. Since h is an inclusion, the composite

N 5 Extl,(Q, Y, N X,) — Bxt, (Q, X,)
is injective. Therefore ¢ is injective and A’ is a subset of Ext’,(Q,Y;, N X,,).

Lemma 4.2. The objects of the category L (F,n) all belong to Cny(B) =
Cn(H).

Proof. Since Y N X belongs to .# C Cn(ZA), all the objects Y; N X; belong to
AB. Fori#mn,....n—N+1, wehave V; =Y;NX; € . We need to show that
Yo, ..o, Yn_ny1 € B. From the pushout squares

Y.NnX, —— Y,

i i

Yo anNXy g ———Yo

} ’

]

Y N1t N Xy Nyt —— YNy,

it follows that Y,,_; is a quotient of Y, 411 ® (Y-t N X, —¢) fort =1,... ,N—1.
In Construction 4.1, we saw that Y,, is an extension of Q(‘A/D by Y, NX, €
A, where ' C Extl(Q,Y, N X,). So |[A'| < |Ext,(Q,Y,, N X,)| < u by
[12, Remark 1.17]. But @ is the coproduct of the < a quotients C of the
generator G, it follows that Q”A/') is a coproduct of < u objects in & and so
QUMD € . Thus [12, Proposition 1.15(iii)] implies that Y;, € %, and hence
Yn-1,...,Y,_nNy1 belong to & by [12, Proposition 1.15(ii)]. O

Lemma 4.3. The category £ (F,n) is p-filtered.
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Proof. Since Z(.%,n) is equivalent to a partially ordered set, we need only show
that every collection of fewer than u objects in £ (%, n) is dominated by an
object of Z(F,n). Suppose that we are given a set {Y7|j € J} of < p objects
in Z(%,n). Since the objects Y7 N X all belong to the u-filtered category %,
we may choose a Z € .# dominating them. Note that X,, = colimxic.# X} and

Extl,(Q, —) commutes with p-filtered colimits. Hence
Ext,, (Q, X,) = colimx:c zExtL, (Q, X))

For any k € Ker(Extl, (Q,Z,) — Extl,(Q, X,)), we choose some morphism
Z — ZF in .F so that k is annihilated by Ext!,(Q, Z,) — Ext’ (Q, ZF). Note
that |Ext’, (Q, Z,)| < u, there are < y possible k. Since .7 is p-filtered, Z* are
all dominated by some object Z' € %#. Thus the chain map Z — Z’ annihilates
all the k, which implies that Im(Ext',(Q, Z,) — Ext.,(Q, Z/,)) maps injectively
to Ext!,(Q, X,,). For each Y7, Y/ is an extension of Qi) by Y7 N X,,, where
A; C Extl,(Q,Y7 N X,) that maps injectively to ExtL, (Q, X,). We may take
the image of A; under the composite

Extl,(Q,Y7 N X,)— Ext\(Q, Z,) = Ext.(Q, Z).

Since the image of each A; is contained in Im(Ext’, (Q, Z,) — Ext’,(Q, Z.)), so
is the union of the images A’ ={JIm(A;). But Im(Ext},(Q, Z,) = Ext,(Q, Z.,))
maps injectively to Ext!, (Q, X,,), so does its subset A’. Let Y’ = B(Z', \').
For the objects Y7, Y’ and B(X,n), we have three extension sequences:

0-YINX =Y = DYQIND) 0,
0= 2 =Y = DNQIND) =0,
0 — X — B(X,n) — DY (QUExt(C:Xn)Dy 5 0.

Since the extension classes are all compatible, we may choose morphisms of
extensions

0—>Yinx Y A 5 479 1(7 V1)) W

Y

0 A Y’ DY QUMD ———0

I |

B(X,n) —— DY (QUExL (C.X0D) o,

For each subobject Y7 of B(X,n), we have a monomorphism k7 : Y7 — B(X,n)
and a commutative diagram in Cn ():
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Y

0—=Yinx Y DY (Q(AD) 0
L |
0 X B(X,n) — DN (QUExtL, (C.X0D) g,

Note that the chain maps f/ and ¢ may be chosen as above, but they are not
unique. Thus there is no reason to expect that A7 should equal gf7. But h/ —g f7
factors through a chain map D) (Q(%D) — X, so h/ — gf7 is determined by
a morphism QU — X, in &/ by [14, Lemma 2.2]. Since Hom,, (Q(D, )
commutes with p-filtered colimits and X, is the p-filtered colimit of { X7} xic 7,
we choose a morphism Z’ — Z7 in .% for each j so that h/ — g f7 factors through
Dg(QUA?')) — Z7 C X. Since there are fewer than i objects Z7 € %, there
is an object Z” € % dominating them. Let W = B(Z"”,A’) and we have
an extension 0 — Z” — W — DY(QUA'D) — 0 corresponding to the image
of A C Extl,(Q, Z!) under the map Extl,(Q, Z") — ExtL,(Q, Z"). Because
the extension classes are compatible, we construct the following morphisms of
extensions:

0 z' Y’ ! DN (QIAVD) — 0
| |
0 7' T W " DN(QIND) 0

0— >x_%o B(X,n) — DN (QUExtw (C.X)D) 5 0.

There is no reason to expect g to be equal to op. But g — op factors through
some ¢ : DY (QUAD) - X. Set & = o + Opn/. Then g = Gp. Now we have

monomorphisms Y7 BN w B(X,n) and b/ —gfi = hJ —GpfI factors

through a chain map DY (QUAD) 77 5 X, Set f? = pfi 4+ 74767, then
of7 = h’ for all j € J. Thus the monomorphisms A’ all factor through &, and
so the subobject & : W — B(X,n) belongs to .Z(.#,n). O

Lemma 4.4. B(X,n) is the colimit of its subobjects Y € L (F n).

Proof. Let Y be an object in Y € Z(%#,n). We have a monomorphism of
exact sequences:

0 YNnx DY (QUAD)

ok o

0 X B(X,n) HDQ(Q(\EH;(Q,X”)D) =0

)
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where hy is the inclusion of a subcoproduct. Since the category Z(.#,n) is
filtered, the colimit in Z(%#,n) of the top row is exact. We wish to show
that the colimit of gy is an isomorphism, it suffices to prove that the colimits
of fy and hy are isomorphisms. But fy and hy are monomorphisms, so are
their colimits. It therefore suffices to prove that the colimits of fy and hy are
epimorphisms. Since the category .# embeds in the category Z(%#,n), we can
view a subobject Y C X as a subobject of B(X,n), where the corresponding
A C Extl,(Q,Y;,) is empty. But the colimit of .% maps epimorphically to X
and this epimorphism factors through the colimit of fy. Hence the colimit of fy
is an epimorphism. Take any A € Ext!,(Q, X,,). Since Ext!,(Q, —) commutes
with p-filtered colimits and X, is the p-filtered colimit of {X!}xicz, there
exist a Z € .# and an element ey € Ext',(Q, Z,) mapping to A. Form the
extension 0 — Z — Y — DY(Q) — 0 corresponding to e;. We have a
morphism of extensions

0 Z Y DY (Q) ————0

lfy igY l/hy
0—=X—>B(X,n) —> DTJY(QUExt}J(Q,Xn)I)) — =0,
where hy is the inclusion of the subcoproduct over the singleton {A}. Thus

the image of the colimit of the hy contains the coproduct over every singleton
in Ext!,(Q, X,,), and hence it must be epimorphism. O

Lemma 4.5. If filtered colimits of < u objects in F belong to .7, then filtered
colimits of < p objects in L (F,n) belong to L (F,n).

Proof. Let Y be an object in £ (%#,n). We have a monomorphism of exact
sequences

0 YNnX Y DN (QUAD) ———0
lfy lgy l/hy
0 X B(X,n) — DN (QUExtw (@.Xn)Dy — 0,

where hy is the inclusion of a subcoproduct and Y N X € #. If |A] < p and
each Y\ N X € .Z, then a filtered colimit of objects {Y* N X} e belong to .%.
Hence the filtered colimit of < g monomorphisms of short exact sequences as
above is such a monomorphism since filtered colimits are exact, as desired. [

Construction 4.6. By Theorem 3.9, the object i;(X) = J*(X) can be con-
structed using a single sequence. Let us remember this sequence:

(i) X°=X.
(i) X! = B(X* n) for some n depending on . The precise relation is that
if i = v+ m, where v is a limit ordinal and m is an integer, then n = —m/2 if

m is even and n = (m + 1)/2 if m is odd.
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(iii) For limit ordinals j we have X7 = %ﬂi<in.
Suppose we are given an a-filtered category % of subobjects of X, whose
colimit is X. For every ordinal i, we establish a subcategory .%; of subobjects
of X? as follows:

(i) S = Z.

(ii) If n is the integer for which Xt = B(X% n), then %, = £ (F;,n).

(iii) Let j be a limit ordinal. A subobject Y C X7 belongs to .Z7 if and only
if Y N X belongs to .%; for all i < j.

Lemma 4.7. Suppose Y C X7 lies in .%; as the notation in Construction 4.6.
Consider the triangle 7'W — Y NX =Y — W, we have W belongs to
LN (Inje?).

Proof. Set Y =Y N X% By assumption, Yt € Z(%;,n) and Y1 = B(Y N
X A') = B(Y?, A\) for some subset A’ C Extl,(Q,Y;’) mapping injectively to
Ext’, (Q, X,,) by Construction 4.1. For limit ordinals v, we have

YY =Y NXY = colimj, (Y N X?%) = colim;, Y.
The lemma now follows from Lemma 3.7 and Construction 3.8. O

Lemma 4.8. Let X be an object of Cn (o) and F C Cn(B) = Kn () a full
subcategory of the subobjects of X. Assume that F is p-filtered with colimit
X and that filtered colimits of < p objects in F belong to F. Then the full
subcategory of F, whose objects are in Cy(Inje?) is cofinal.

Proof. Let Y be an object in .%,. We need to produce a morphism Y — Z in
Fo with Z € Ky(Injo/). We inductively define a sequence {Z’} of objects in
F;.

(i) Put 2° =Y N X.

(ii) Assume n is the integer for which %, 1, = Z(%;,n), and suppose we
have defined Z? € .%;. Choose an object W' € .%; containing Z* and Y N X°.
There exists a morphism W* — V? in .%; annihilating Ker(Extl, (Q, W}) —
Extl,(Q, X%)) by the proof of Lemma 4.3. Let A’ = Im(Extl,(Q,W}) —
Extl, (Q, V). Then A’ maps injectively to Extl (Q,X%). Define Z+! =
B(Vi \') € Z;11. Then Zi*+! is given by a morphism of extensions

0 Vi Zi+1 DY (QUAD)

L) !

0 ——> X — B(X,n) — DY (QUPxt%(@XnD) — 0.

0

Note that the monomorphisms f and h are given, and we make a choice of a
compatible g.

(iii) For limit ordinals ), define Z* = colim;~xZ’. We have a morphism
Z' — Z'*! that factors as Z* — W' — V¢ — Zi*+1 By construction, the mor-
phism W? — V? kills the kernel of the map ¢ : Extl, (Q, W) — Ext.,(Q, X?)
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while the morphism V? — Z*! kills the image of ¢. It follows that the com-
posite Z! — Z'*! is annihilated by Extl,(Q, —) for some suitable n for which
X1 = B(X* n) and n occurs between i and i +w for any limit ordinal i. If we
restrict to limit ordinals, then Ext’, (Q, —) annihilates Z — ZJ for any integer
n and any pair ¢ < j of limit ordinals. But Z¢ is the a-filtered colimit of the
limit ordinals < a and Ext!,(C, —) commutes with a-filtered colimits for each
quotient C' of the generator G. Tt follows that Ext!,(C, Z%) = 0 for all C' and
all n, and hence Z is an N-complex of injectives. Therefore by construction,
Y = colim(Y N X*) maps in Fy to Z = colimZ'. O

Lemma 4.9. Let iy : Kn(«) — Kn(Injo?) be the functor of Theorem 3.9.
Then the objects {is(S)|S € Kn(B)} generate the category Ky (Injer).

Proof. For every nonzero object X € Ky (Inj/), we need to produce a nonzero
morphism i,(S) — X in K (Injo/) or equivalently a nonzero morphism S — X
in Ky (). If X is not acyclic, there is a nontrivial amplitude homology group.
Without loss of generality, we may assume H{(X) # 0 for some ¢. Choose a map
G — Z5(X) that does not factor through B) ~*(X). Then G — Z§(X) — X
extends to a chain map D (G) — X that is nonzero in amplitude homology, and
also D§(G) € Cn(%). Next suppose X is acyclic. If X # 0 in Ky (Inj«/), then
X is not contractible. So there exists an n such that Z. (X) is not injective in
. Thus there is a quotient C' of G’ and a nonzero element of Ext!,(C, Z (X)).
But elements of Ext,(C, ZL (X)) are in a bijection with morphisms D} (C) —
X in Kn(&). Therefore we have a nonzero morphism D! (C) — X where
DL(C) € Cn(2), as claimed. O

Let .7 be a triangulated category with arbitrary coproducts and suspension
functor ¥, a an infinite regular cardinal. The category .7 is a-compactly
generated if there is a set of objects . such that ¥.¥ = ., satisfying the
conditions:

(G1) an object X € 7 is zero if 7(S,X) =0 for all S € .7;

(G2) for each family of morphisms {f; : X; — Y; }ier, the induced morphism

7S, %) = 7. ][ V)
icl iel
is surjective for all S € . if the morphisms
T8, X;) = 7(5,Y;)
are surjective for all ¢ € I and all S € .7
(G3) for each family of objects {X;}ier of 7, each morphism S — [[,.; X;
factors through S — [, ; X; for some subset J C I with |J] < c.
Theorem 4.10. Let B = o/* the category of p-presentable objects in o/ . Then
the objects {i¢(S)|S € Cn (L)} form a p-compact generating set in Ky (Inje).
Proof. Suppose we are given a set {X*|\ € A} of objects in Ky (Inj«/). Then
the coproduct of these objects in Ky (Inje?) is formed by applying the functor
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i¢ of Theorem 3.9 to the ordinary coproduct in Ky (/) or Cy (7). Set X =
Ixea X* and the category .7 as

F={ H SM| A C A with |A'] < and each S* € Cy (%) is a subobject of X*}.
AEN’

Since each object X in Cy (<) is the p-filtered colimit of its subobjects {S —
XS €Cn(A)}, and the coproduct of the X* satisfies

[ X" = colim yen ] colim gr,ir 5%
AEA [N |<p AeA’ S*eCn (B)
it follows from Lemmas 4.2-4.5 that i,(X) = X¢ is the colimit in Cy (&)
of the p-filtered category .%,, and hence any chain map S — i,(X) factors
through some object Y € %, where S € Cy(#). By Lemma 4.7, we have a
triangle S7'W — YN X 5 Y — W with W € *Ky(Injr), and so i(¢) is
an isomorphism. Thus the chain map S — i,(X) factors as S — i, (Y N X) —
io(X). But Y NX € .7, it follows that [[,.,, S* € .#. We have factored the
chain map as
Z[(S) — ig( H S/\) — Z[(H X/\)
AEA/ A€A
in Ky (Inj«”). Now suppose that we are given in x(Inj</) a vanishing com-
posite
in(9) L i JT 8 ST X%,
A€’ A€A

where U = [[,cp S € F = Fy. By Lemma 4.8, in .Z, the objects that
belong to Cn(Inj«?) are cofinal. There exists a chain map U — Y in %,
with Y in the subcategory. We have a morphism S — i,(S) = (YY) =Y in
Kn(Inje?). Choose a representative S — Y in Cn(%/). Then the composite
S = Y — i(X) is null-homotopic. But i;(X) is the p-filtered colimit of
Fo and S is p-presentable. There is a chain map ¥ — Z in %, so that
the composite S — Y — Z is already null-homotopic. Since io(Y N X) —
(YY) =Y and i¢(ZNX) — 9,(Z) are isomorphisms in Ky (Inje/), the chain
map S — (Y NX) — i(Z N X) is zero in Kn(Injo?) for some Z € %,. The
proof is complete by Lemma 4.9 and [8, Theorem A]. O

5. The compact generation of Kn (PrjR)

In this section, we show that the homotopy category Ky (PrjR) of N-compl-
exes of projectives is compactly generated whenever R is right coherent.

Let 2" = Prj(R) (resp. Inj(R), Flat(R)) be the subcategory of projective
(resp. injective, flat) R-modules. We define the homotopy category Ky (PrjR),
Kn(InjR), Ky (FlatR) respectively. We next investigate compactness of the
homotopy category Ky (PrjR). The following lemmas will be handy to prove a
couple of little lemmas about chain maps from N-complexes of finitely gener-
ated projective R-modules.
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Lemma 5.1. Let X be an N-complez of finitely generated projective R-modules
and Z an N-complex of flat R-modules. Given a chain map f: X — Z and

some integer j. If fi vanishes fori > j, then the map f factors as X >Y Ny
with Y an N-complex of finitely generated projective R-modules, and' Y may be
chosen so that Y; =0 forv > j.

Proof. Without loss of generality we may assume j = 0. If ¢ > 0, then the
map f; : X; — Z; vanishes by assumption, and hence factors through Y; = 0.
It therefore suffices to show, by induction, that if we can define a factorization
up to some integer i, then we can extend to ¢ — 1. Consider the following
commutative diagram:

Ay N2 i X
Xi+N—2 - Xz'+N—3 to X¢+1 X Xi—1
\Lgi+N—2 \Lgi+N—3 l/gi-%—l \ng
sz+N72 d3,+1
Yiyn-o——Yiin_3 e Y Y; fima
\Lhi+N—2 \Lhi+N—S l/hi+1 \Lhi
diZ+N—2 diz+1 d?
Zi+N—2 I Zi+N—3 t Zi+1 Z; Zi_1.

An easy diagram chase tells us that the maps
0 1 0 - 0 0
0 0 1 -0 0
0 0 o 10
Nl _gN=2 _gN-=3 g g

K+N71®"'®K+2@YYZ’+1 e X; 0 0 _>0 . 0 d

dVN " YhiiN_2,...,d®hitr,dh, fi
K—+N_2@~~@1€-+1@K€BX¢_1( Nz d i dha,f 1)Zi_l
must compose to zero. Note that YV ny_ 1@ @Y1 8 X, and Vi n oD - B

Y; ® X;_; are finitely generated and projective and Z;_; is flat, it follows from
[11, Corollary 3.3] that there is a factorization of (d¥ ~*h;  n_a,...,d*hiy1,dh;,

fi—1) as

ANt d%d,gi— hi_
Yiyn 2@ DY @Y, & X; ( mey®d 1)}/1‘—1 = Zi1,
where Y;_; is finitely generated and projective, and the composite
0 1 0 0 0
0 0 1 0 0
0 0 0o 1 0
_gN-l _gN=2 _gN=3 g g
Yiyn-1D - Y1200 Y1 X, 0 o 9 0 d
(dNil,dNiz,..,,dhgi_l)
Yitn2@ - 0Yinn @Y, ® X, — Yi1

vanishes. This defines for us the maps g;_1,h;_; and d} in the diagram
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ax
Xigg —=X; —— X

R

Vi ——Y, —> Y,

[,

Ziyn—>Zy —> Z;_1.

Then the above diagram is commutative, h;_19;_1 = fi_1 and Y is an N-
complex. O

Lemma 5.2. Let .7 be the full subcategory of Prj(R) consisting of free modules
of finite rank. Then each X € Kn(PrjR) is filtered by bounded above N -
complexes in & .

Proof. Let % be the full subcategory of K (PrjR) consisting of bounded above
N-complexes in .. Given X € Kn(PrjR), we fix for each component X,, an
Z-filtration. We will construct by induction a % -filtration (X |a < o) of X
such that for each a < o

(1) Xt /X is bounded above,

(2) X2 € Prj(R) and X2t/ X2 € . for all n.

To construct the filtration, we put X° = 0 and X = Uy X7 for limit
ordinals o < o. For non-limit steps, assume we have constructed X g X and
we take an integer n and a submodule W C X,, with [W| < Rg such that W &
X&. Then we put X2 = X2 for m > n. Note that (W 4+ X2)/X> C X,/ X<
and |(W + X2)/X2| < R, it follows from [13, Corollary 2.7] that there is
Xot! € Prj(R) such that W+ X2 C X2+ and | X2/ X%| < Ng. Further note
that, up to isomorphism, X+ /X% € 5” For m < n we proceed by induction.
Suppose we have already constructed X +1 such that Xf:;ll /Xy €S up
to isomorphism. Then there exists a submodule W’/ C X2t} with [W/| < X,
such that X2H) = X&,, + W', But |dX_ ,(W')| < g, we can again use
[13, Corollary 2.7] to find X2 € Prj(R) such that X2 + dpy,;(W') C X!
and X3 /X2 is isomorphic to a module from .#. This finishes the induction.
It is easy to check that X+ C X is a subobject and X**!/X“ is isomorphic
to an object of %/. This shows our claim. O

Lemma 5.3. Suppose that Z is an N-complex of flat R-modules. Then Z is
pure acyclic if and only if Z € Ky (PrjR)* C Kn(FlatR).

Proof. “If” part. Let X be a pure projective R-module. Then by [16, Lemma
4.4], 0 = Homy gy (D} (X), Z) = H!, (Hompg(X, Z)) for all n and ¢. Therefore
Homp (X, Z) is acyclic and hence Z is pure acyclic.

“Only if” part. Let Z be a pure acyclic N-complex in Cy(FlatR). Consider
the full subcategory Z C Ky (FlatR) defined by

ob(Z) = {X € Ky(PrjR)|Homg (g (X" X, Z) =0, V n > 0}.
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If X € ob(#), then clearly ¥X € ob(#). Next we show QX € Z. Given

a chain map v in Homg (g (X" (Q2X),Z) = Homy (g (2X,Q"Z). If n =

0, then Homg  (r)(2X,Z) = Homy () (XX,Z) = 0 since ¢ : QX — ¥X
10

0o 00
d 1 0o 00

with ¢,, = . . .| (X)) = (XX)pgw is an isomorphism.
dN=2 gN=3 gN-a [ 59

Assume n > 1. We have a canonical exact sequence 0 — ortlz 5 F, —
QX — 0. Then by Lemma 2.2, ExtéN(R)(X, onz) = ExtéN(R)’c's.(X, Oz =~
Homy () (E"7'X, Z) = 0, it follows that Extt, z)(QX,Q""1Z) = 0, and
hence u ~ 0 by [15, Proposition 2.14]. Thus the category Z is a pretriangulated
subcategory, and is closed in Ky (PrjR) under coproducts. We wish to show
that n (PrjR) C %. By Lemma 5.2 it suffices to prove that % C %, where %
is the set of bounded above N-complexes with components finitely generated
projective.

For any object X € % and any morphism u : X — Z, we want to produce
a null homotopy {s, : X, = Z,+n—1} by induction on n. Since X € %, we
know that X; = 0 for ¢ > 0. We may choose an integer j so that X; = 0 and
define s; = 0 for 7 > j. Suppose s; has been defined for ¢ > k. Suppose further
that u;yn_—o = dN_lsi.;_N_g + dN_QSH_N_?,d + -+ Si_ldN_l for i > k. If
Xiyn—2 =0 for ¢ > k, then this identity is automatic. We will show that we
can extend the homotopy. Precisely, we can define r; : X; — Z;; ny_1 for all
i >k —1, so that

(i)r;=s;foralli > k+ N —1.

(ii) wjrN—2 = dN_1Ti+N_2—|—dN—2Ti+N_3d+- cegrqdN "1 foralli > k—1.
Note that we cannot guarantee that sgys = 744 for t =0,1,..., N — 2. We
need to modify si to extend the homotopy. But for ¢ > k + N — 2 the s; are
stable. It remains to prove the induction step. Suppose that for some k, we
have defined s; for all 4 > k, in such a way that

Uit N—2 = dN715i+N_2 + dN725i+N_3d+ R Si_ldNil, Vi>k.

Extend s to all ¢ by defining s; = 0 for all ¢ < k. Let @ : X — Z be the
chain map given by @; = u; — dV"ls; —dV 25,1 — - — 5;_np1dV L We
have a chain map @ : X — Z. In the induction step we replace u; by %;, and
r; by 7; = r; — s;. The induction assertion becomes that there exist maps
72 Xy = Ziyn—1 for all i > k — 1, so that

(Y7 =0foralli>k+ N —1.

(iil) Uit N—2 = dN_lfi+N72+dN_27ji+N,3d+~ . ~+’Fi,1dN_1 foralli > k—1.
Now observe that 4 : X — Z is a chain map from an object X in %. Fur-
thermore w; = 0 for all ¢ > k 4+ N — 2. By Lemma 5.1, we can factor u as
X 5Y 5 Z whereY € % and Y; = 0 for i > k+ N — 2. The asser-
tions (i') and (ii’) above would immediately follow if we could produce maps
7:1‘ : Yz — Zi+N—1 for all 4 > k— 1, so that

(i"yr;=0forali>k+ N —1.
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(ii”) Wit N—2 = dN_lfi+N72 +dN_27:i+N,3d-‘r- - -—l—fi,ldN_l foralli > k—1.
Next note that ¥; = 0 for ¢ > k+ N —2, which means that (i”) has no choice but
to be true. And furthermore the equality in (ii”) is also immediate for i > k.
There is only one map from Y, y_2 = 0 to Z;1 y_o. Therefore (i’) and (ii”)

come down to showing that there exist maps Tryn_2,..., 7k, Tk—1, satisfying
the single identity wyin_2 = dN " 'Fpin_o + dVN 2 N s3d + -+ Fp_1dV L
Next we prove the existence of the maps 7ty n—2,...,7k,7k—1. Consider the
chain map w:Y — Z:
dZ+N—2 d{
0 Yirn—2 ——Yiyn_3 e Yy Y1
i \L?U}c+N72 lwarN,g iwk iwk,l
derAVfl df+zv72 df
Zk+N-1 Iyt N—2 —>= Lyt N-3 e Zy; Zy—1

We have the following commutative diagram

d¥ ar
Yien—2—=>Yiyn-3—=> >V, =Y,

iwk+1\f72 iwk+N73 iwk lwk,l
d? d?

Zhin-2® Zign s> 2L 2 LB, (2) By (2) > By N(Z) C Zi—n.

This yields a vanishing composite Y34 y_2 — Yi_1 — Bj_o(Z) with both
Yiyn_2, Yy_1 finitely generated and projective and B _,(Z) flat. It allows us
to factor the map Y 1 — Bi o(Z) as Yi_1 — Yi_o — Bj_»(Z) with Y;_»
finitely generated and projective by [11, Corollary 3.3], and in such a way that
the composite Yiin—2 — Yir—1 — Yi_o vanishes. We also have a vanish-
ing composite Yy n_3 = Yi_o — Bi_;;(Z) with both Yy, n_3,Yr_o finitely
generated and projective and B} 5(Z) flat. It allows us to factor the map
Yioo — Bi_5(Z) as Y_o — Yi_3 — Bi_5(Z) with Y,_3 finitely generated
and projective by [11, Corollary 3.3], and in such a way that the composite
Yien—3 — Yi_o — Yji_3 vanishes. Continuing this process, we have a van-
ishing composite Yy, — Yi_ni1 — BkN:Al,(Z) with both Y, Yy _ny1 finitely
generated and projective and Biv__]\l,(Z ) flat. It allows us to factor the map
Yi-n+1 — By m(Z) as Yi_ns1 — Yien — B w(Z) with Yi_py finitely
generated and projective by [11, Corollary 3.3], and in such a way that the
composite Yy — Yir_n+1 — Yip_n vanishes. In other words we can form a
commutative diagram

ay dy
Yk+N729“'9Yk{9ka1‘>Yk72*>Yk73‘>"">Yk7N*>0

lwarN—? lwk \ka—l \Lﬁnﬁz \ka—s \ka—N l
d? i 1 dZ 2 N-1
ZhyN—2 = ==Ly > Zp—1 > By »(2) > By 3(Z2) = = B (Z) > Ze-n-1,
where the horizontal any N-consecutive composites vanish. We deduce a chain
map of N-complexes
s 0 Vin S = Y S Vi > Vi > Yig > Yy —— 00— -

i l1uk+,\;,g lwk \ka,| lwk,z l/wk,g i’l“k»,]\' l/
d? d? dZ d?

=L N1 > LptN-2 > =L > L1 > Lo > L3> > L N> Lk N-1">""" .
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Then [16, Lemma 5.2] implies that this chain map is null homotopic. Therefore
we have defined 74y N_2,...,Tk, Tk—1, such that
Wypn—2 = dY N0+ dN PR n_ad + o+ T d™ T

This completes the induction. ([

The following result was proved by Neeman when N = 2 (see [11, Proposition
7.14]).

Theorem 5.4. Let R be right coherent. Then the homotopy category Ky (PrjR)
is compactly generated.

Proof. Let A be a finitely presented R-module. Then [16, Proposition 3.4]
yields a quasi-isomorphism D (A) — pf A with p!, A a bounded below N-
complex in Prj(R) for all n,t, and each N-complex pf A is a compact object in
Kn(PrjR) by [16, Lemma 5.5]. It remains to show that ¢ = {p,, A| A € R-Mod
is finitely presented} is a set of generators. Suppose that X in Ky (PrjR) has
Homy  (prir) (G, X) = 0 for every G € 4. We show X =0 in Kn(PrjR).

First 0 = Homyc  (prjr) (L, R, X) = H},(Hompg(R, X)) = H},(X) for all n and
t. So X is acyclic. Again by [16, Lemma 5.5], for any finitely presented left
R-module A,

0 = Homy  (prjr) (PL A, X) = H, (Homp (4, X)), V n,t.

Then [4, Theorem 6.4] implies that 0 — 7! (X) — X,, — ZY /(X)) — 0 is pure
and Z' (X) is flat for all n,t. Thus Z’ (X) is projective for all n,¢ by Lemma

5.3. This implies that X is a projective N-complex by the dual of [1, Theorem
4.5], and hence X = 0 in Ky (PrjR), as desired. O
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