• Title/Summary/Keyword: homotopy category

Search Result 16, Processing Time 0.031 seconds

TWO DESCRIPTIONS OF RELATIVE DERIVED CATEGORIES

  • Bahiraei, Payam
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • In this paper, we provide two different descriptions for a relative derived category with respect to a subcategory ${\mathcal{X}}$ of an abelian category ${\mathcal{A}}$. First, we construct an exact model structure on certain exact category which has as its homotopy category the relative derived category of ${\mathcal{A}}$. We also show that a relative derived category is equivalent to homotopy category of certain complexes. Moreover, we investigate the existence of certain recollements in such categories.

THE HOMOTOPY CATEGORIES OF N-COMPLEXES OF INJECTIVES AND PROJECTIVES

  • Xie, Zongyang;Yang, Xiaoyan
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.623-644
    • /
    • 2019
  • We investigate the homotopy category ${\mathcal{K}}_N(Inj{\mathfrak{A}})$ of N-complexes of injectives in a Grothendieck abelian category ${\mathfrak{A}}$ not necessarily locally noetherian, and prove that the inclusion ${\mathcal{K}}_N(Inj{\mathfrak{A}}){\rightarrow}{\mathcal{K}}({\mathfrak{A}})$ has a left adjoint and ${\mathcal{K}}_N(Inj{\mathfrak{A}})$ is well generated. We also show that the homotopy category ${\mathcal{K}}_N(PrjR)$ of N-complexes of projectives is compactly generated whenever R is right coherent.

HOMOTOPY TYPE OF A 2-CATEGORY

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • The classical group completion theorem states that under a certain condition the homology of ${\Omega}BM$ is computed by inverting ${\pi}_0M$ in the homology of M. McDuff and Segal extended this theorem in terms of homology fibration. Recently, more general group completion theorem for simplicial spaces was developed. In this paper, we construct a symmetric monoidal 2-category ${\mathcal{A}}$. The 1-morphisms of ${\mathcal{A}}$ are generated by three atomic 2-dimensional CW-complexes and the set of 2-morphisms is given by the group of path components of the space of homotopy equivalences of 1-morphisms. The main part of the paper is to compute the homotopy type of the group completion of the classifying space of ${\mathcal{A}}$, which is shown to be homotopy equivalent to ${\mathbb{Z}}{\times}BAut^+_{\infty}$.

DERIVED CROSSED MODULES

  • Sahan, Tuncar
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.439-458
    • /
    • 2018
  • In this study, we interpret the notion of homotopy of morphisms in the category of crossed modules in a category C of groups with operations using the categorical equivalence between the categories of crossed modules and of internal categories in C. Further, we characterize the derivations of crossed modules in a category C and obtain new crossed modules using regular derivations of old one.

GOTTLIEB SUBSETS WITH RESPECT TO A MORPHISM IN THE CATEGORY OF PAIRS

  • Kim, Ji-Yean;Lee, Kee-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1311-1327
    • /
    • 2010
  • We introduce the concept of cyclic morphisms with respect to a morphism in the category of pairs as a generalization of the concept of cyclic maps and we use the concept to obtain certain sets of homotopy classes in the category of pairs. For these sets, we get complete or partial answers to the following questions: (1) Is the concept the most general concept in the class of all concepts of generalized Gottlieb subsets introduced by many authors until now? (2) Are they homotopy invariants in the category of pairs? (3) When do they have a group structure?.

The Universal Property of Inverse Semigroup Equivariant KK-theory

  • Burgstaller, Bernhard
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.111-137
    • /
    • 2021
  • Higson proved that every homotopy invariant, stable and split exact functor from the category of C⁎-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting.

THE GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.491-506
    • /
    • 2006
  • In this paper, we extend the concept of the group ${\varepsilon}(X)$ of self homotopy equivalences of a space X to that of an object in the category of pairs. Mainly, we study the group ${\varepsilon}(X,\;A)$ of pair homotopy equivalences from a CW-pair (X, A) to itself which is the special case of the extended concept. For a CW-pair (X, A), we find an exact sequence $1\;{\to}\;G\;{\to}\;{\varepsilon}(X,\;A)\;{to}\;{\varepsilon}(A)$ where G is a subgroup of ${\varepsilon}(X,\;A)$. Especially, for CW homotopy associative and inversive H-spaces X and Y, we obtain a split short exact sequence $1\;{\to}\;{\varepsilon}(X)\;{\to}\;{\varepsilon}(X{\times}Y,Y)\;{\to}\;{\varepsilon}(Y)\;{\to}\;1$ provided the two sets $[X{\wedge}Y,\;X{\times}Y]$ and [X, Y] are trivial.

COBORDISM의 소개(紹介)

  • Lee, Gi-An
    • Honam Mathematical Journal
    • /
    • v.1 no.1
    • /
    • pp.77-81
    • /
    • 1979
  • Almost mathematicians wish to study on the classification of the objects within isomorphism and determination of effective and computable invariants to distinguish the isomorphism classes. In topology, the concepts of homotopy and homeomorphism are such examples. In this lecture I shall speak of with respect to (i) Thom's cobordism group (ii) Cobordism category (iii) finally, the semigroup in cobordism category is isomorphic to the Thom's cobordism group.

  • PDF

FIBREWISE INFINITE SYMMETRIC PRODUCTS AND M-CATEGORY

  • Hans, Scheerer;Manfred, Stelzer
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.671-682
    • /
    • 1999
  • Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E\;\longrightarrow\;B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E)\;l\ongrightarrow\;B$. For any pointed space B let $G_I(B)\;\longrightarrow\;B$ be the i-th Ganea fibration. Defining $M_R-cat(B):= inf{i\midR_f(G_i(B))\longrihghtarrow\;B$ admits a section} we obtain an approximation to the Lusternik-Schnirelmann category of B which satisfies .g.a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_Q$-cat(B) coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to cat (B) by a result of K.Hess. All the constructions more generally apply to the Ganea category of maps.

  • PDF

CANCELLATION OF LOCAL SPHERES WITH RESPECT TO WEDGE AND CARTESIAN PRODUCT

  • Hans Scheerer;Lee, Hee-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • Let C be a category of (pointed) spaces. For $X, Y \in C$ we denote the wedge (or one point union) by $X \vee Y$ and the cartesian product by $X \times Y$. Let $Z \in C$; we say that Z cancels with respect to wedge (resp. cartesian product) and C, if for all $X, Y \in C$ the existence of a homotopy equivalence $X \vee Z \to Y \vee Z$ implies the existence of a homotopy equivalence $X \to Y$ (resp. for cartesian product). If this does not hold, we say that there is a non-cancellation phenomenon involving Z (and C).

  • PDF