• Title/Summary/Keyword: hollow module

Search Result 122, Processing Time 0.028 seconds

Filtration Characteristics according to Hollow Fiber Dispersion in Submerged Membrane Module (침지형 막모듈에서 중공사 분산에 따른 여과특성)

  • 이재인;신춘환
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.173-176
    • /
    • 2000
  • This study was carried out to investigate the filtration characteristics of membrane modules according to hollow fiber dispersion for direct solid-liquid separation of activated sludge. 2 bundle, 4 bundle, and 10 bundle, and 10 bundle module used in this experiment according to hollow fiber dispersion was manufactured at laboratory and permeate flux and transmembrane pressure(TMP) of each module were observed under a suction pressure of 0.5kgf/c$m^2$. As the hollow fibers were dispersed, permeate flux was increased and TMP was decreased. Permeate flux and TMP of each module was 15.0 $\ell$/$m^2$.h and 31.8 cmHg for 2 bundle, 16.0 $\ell$/$m^2$ .h and 17.4 cmHg for 4 bundle, and 20.4 $\ell$/m2 .h and 31.8 cmHg for 10 bundle. In conclusion, the membrane fouling is expected to be decrease by maintaining lower TMP with hollow fiber dispersion.

  • PDF

A Development of Servo Driver for Implementation of Hollow type Joint Module (중공형 관절 구현을 위한 서보 드라이버 개발)

  • Moon, Yong-Sun;Roh, Sang-Hyun;Cho, Kwang-Hoon;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.843-847
    • /
    • 2010
  • Recently, one of the most interesting issue in the intelligent robot and the industrial robot area is the design and an implementation of servo driver module based on motion network for hollow type joint module of all-in-one structure. In this paper, we designed and implemented for hollow type driver, and also verified the performance of the developed module through the experiment.

An Experimental Study on the Characteristic of Thermal Performance according to Feed Water Conditions to of Vacuum Membrane Distillation Module using PVDF Hollow Fiber (PVDF 중공사막을 이용한 진공 막 증류 모듈의 공급수 조건에 따른 열성능 특성에 관한 실험적 연구)

  • Joo, Hongjin;Kwak, Heeyoul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • In this study, thermal performance test of VMD module was performed, prior to the construction of the demonstration plant using the vacuum membrane distillation (VMD) module of the capacity of $400m^3/day$ and to the commercialization of the VMD module. For the thermal performance test, the experimental equipment of capacity of $2m^3/day$ was constructed. The permeate flux test and thermal performance test according to feed water conditions such as temperature and flow rate were conducted. The VMD module used in the study was manufactured by ECONITY Co., LTD with PVDF hollow fiber membrane. As a result, the Performance Ratio (PR) of the VMD module showed the maximum value of 0.904 under the condition of feed water temperature of $75^{\circ}C$ and flow rate of $8m^3/h$. PR value of the VMD module using PVDF hollow fiber membrane showed linearly increasing relationship with feed water temperature and flow rate. Also, The permeate flux of the VMD module was analyzed to have maximum value of 18.25 LMH and the salt rejection was 99.99%.

A Study on Flow Rate Properties and Optimal Selection of Nitrogen Membrane Module of Hollow Fiber Type (중공사형 질소 분리막 모듈의 최적 선정과 유량특성에 관한 연구)

  • Kim, Jong-Do;Lee, Sangu-Su;Kim, Jeon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.915-922
    • /
    • 2008
  • The gas separation technology using membrane is widely used to refine various gases in many industry fields and recently is being applying in $CO_2$ recovery technology. In the gas and chemical tanker. nitrogen generators for inerting, purging and padding are on board and most of them have membrane modules of hollow fiber type with long life and vibration resisting properties. Because a membrane module is a key component accounting for 50% of total manufacturing cost of nitrogen generator, adequate selection for it is an important problem. In this paper, the flow performance coefficient based on dimension and specification data of membrane module was relatively selected to compare nitrogen generating capacity of module and various performance tests about the selected PARKER ST6010 membrane module were conducted. As a result, the useful coefficient and basic data in selecting a membrane module were achieved.

Study of the ageing of hollow fibers in an industrial module for drinking water production

  • Wang, S.;Wyart, Y.;Perot, J.;Nauleau, F.;Moulin, P.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • In this study, ageing characteristics of an industrial hollow-fiber membrane module were investigated after 50 months of drinking water production. For this purpose, the industrial module was opened to make 18 smaller modules with hollow-fibers taken from different parts of the industrial module. These modules were probed by the use of a magnetic nanoparticle (NP) challenge test based on magnetic susceptibility (K) measurement of permeate. No magnetic susceptibility was detected in permeate when the challenge test was performed on an intact membrane module, indicating the complete retention of nanoparticles by the membrane. The compromised membrane module can be successfully detected by means of magnetic susceptibility measurement in permeate. So, this study clearly demonstrates that ageing of ultrafiltration membranes can be monitored by measuring the magnetic susceptibility of permeate from an ultrafiltration membrane module. These results showed that the hollow fibers in the center zones of the bundle would age faster than those in the outer zones around the bundle. This result is in agreement with numerical simulation (Daurelle et al. 2011).

Development of Commercial-scaled Pervaporation Hollow Fiber Membrane System for High Pressure and High Temperature Applications (고온 고압용 상업적 규모의 중공사 투과증발 막시스템 개발)

  • Yeom, Choong Kyun;Kang, Kyeong Log;Kim, Joo Yeol;Ahn, Hyo Sung;Kwon, Konho
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.257-266
    • /
    • 2013
  • The main purpose of this study is to develop a commercial scale of pervaporative process equipped with hollow fiber membrane modules, being able to effectually purify organic solvent at high temperature well over its boiling point under high vapor pressure. Three constituent technologies have been developed; 1) to fabricate braid-reinforced hollow fiber membrane stable in high pressure and high temperature application, 2) to design and fabricate a commercial scale of hollow fiber membrane module, and 3) to design and fabricate a pilot scale of pervaporation equipment system. The developed hollow fiber membrane possesses a membrane performance superior to the membrane of Sulzer (Germany) which is the most-well known for pervaporation process, and the membrane module equips hollow fiber membranes of $4.6m^2$ and the pervaporation system can treat organic liquid at 200 L/h, which is based on the dehydration of 95 wt% isopropyl alcohol (IPA). Since the membrane module is designed to flow in and pass through the inside of individual hollow fiber membrane, not to involve both the formation of feed's dead volume observed in flat-sheet membrane module and the channeling of feed occurring inside hollow fiber bundle which lower membrane performance seriously, it showed excellent separation efficiency. In particular, the module is inexpensive and has less heat loss into its surrounding, in compared with flat-sheet membrane module. In addition, permeant can be removed effectively from the outer surface of hollow fiber membrane because the applied vacuum is conveyed uniformly through space between fibers into respective fiber, even into one in the middle of the hollow fiber bundle in which the space between fibers is uniform in distance. Since the hollow fiber membrane pervaporation system is the first one ever developed in the world, our own unique proprietary technology can be secured, preoccupying technical superiority in export competitive challenges.

Separation of Cr(VI) from Heavy Metal Salts Mixed Solution by using Hollow Fiber Module (실관막모듈에 의한 중금속염 혼합용액으로부터 Cr(VI) 분리)

  • 최대웅
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.107-112
    • /
    • 2001
  • This work reports the application of a hollow fiber module(HFM) for Cr(VI) extraction from heavy metal salts mixed solution by using microporous hydrophobic hollow fiber module. In HFM configuration, the organic extraction used for the extraction of Cr(VI) was di-(2-ethyl hexyl) phosphoric acid(D2EHPA) diluted with n-heptane. The study of HFM includes the influence of hydrodynamic and chemical condition, i.e., the flow rate of feed solution, the time of reactive extraction, the concentration of feed solution, and the pH of aqueous phase solutions. Several experiments with synthetic solution of different mixed components system of Cr(VI) solutions established optimum condition to achieve a clean separation of Cr(VI). It was possible to separate Cr(VI) in the presence of metal salts mixed solution, such as Zn(II), Ni(II), Cu(II), and Cd(II) using the HFM technique.

  • PDF

The Effect of the Variation of Hollow Fiber Diameter and Curvature and Turn Number on Performance for Microfiltration Helical Modules (Microfiltration Helical Module들에서 Hollow Fiber의 Diameter과 Curvature 및 Turn수의 변화에 따른 성능변화에 관한 연구)

  • 이광현
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.84-94
    • /
    • 1997
  • The performances of both module sets made by different methods for helical module were compared. All experiments were conducted simultaneously at the same transmembrane pressure and energy cosumption per membrane area. The effects of Dean vortices for reducing concentration polarization and fouling were low for the first module set. The increase of 115% for permeate flux improvement(permeate flux difference ${\times}100$/pemeate flux of linear module) was measured. The second module set was more effective in reducing concentration polarization and fouling.

  • PDF

Flow-Dependent Friction Loss in an Implantable Artificial Lung

  • Lee, Sam-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1470-1476
    • /
    • 2002
  • The goal of this work is to design and build an implantable artificial lung that can be inserted as a whole into a large vein in the body with the least effect on cardiovascular hemodynamics. The experimental results demonstrate that the pressure drop is not entirely related to viscosity effects. The friction factor decreases with an increase in the number of tied-hollow fibers at a constant Reynolds number A uniform flow pattern without stagnation is observed at all numbers of tied hollow fibers tested. The tied hollow fiber module, built in this study with 3 cm of outer diameter of module. 380 m of outer diameter of tied hollow fiber, and 700 number of tied hollow fiber with length of 60 cm, which shows a pressure drop of 13-16 mmHg, satisfies the required pressure drop qualifying 15 mmHg as an intravascular artificial lung.

Simulation of Pervaporation Process Through Hollow Fiber Module for Treatment of Reactive Waste Stream from a Phenolic Resin Manufacturing Process (페놀수지 생산공정에서 배출되는 반응성 폐수처리를 위한 중공사막 모듈 투과증발 공정모사)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.257-267
    • /
    • 2003
  • For the treatment of reactive phenolic resin waste, a simulation model of pervaporative dehydration process has been developed through hollow fiber membrane module. Some of basic parameters were determined directly from dehydration of the waste liquid through a flat sheet membrane to get realistic values. The simulation model was verified by comparing the simulated values with experimental data obtained from hollow fiber membrane module. Hollow fiber membranes with active layer coated on inside fiber were used, and feed flew through inside hollow fiber. Feed flow rate affected membrane performances and reaction by providing a corresponding temperature distribution of feed along with fiber length. Feed temperature is also a crucial factor to determine dehydration and reaction behavior by two competing ways; increasing temperature increases permeation rate as well as water formation rate. Once the permeate pressure is well below the saturated vapor pressure of feed, permeate pressure had a slightly negative effect on permeation performance by slightly reducing driving force. As the pressure approached the vapor pressure of feed, dehydration performances declined considerably due to the activity ratio of feed and permeate.