• Title/Summary/Keyword: hole transporting layer

Search Result 100, Processing Time 0.042 seconds

Electrical and Optical Characteristics of QD-LEDs Using InP/ZnSe/ZnS Quantum Dot (InP/ZnSe/ZnS 양자점을 이용한 QD-LED의 전기 및 광학적 특성)

  • Choi, Jae-Geon;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.151-155
    • /
    • 2014
  • We have developed quantum dot light emitting diodes (QD-LEDs) using a InP/ZnSe/ZnS multi-shell QD emission layer. The hybrid structure of organic hole transport layer/QD/organic electron transport layer was used for fabricating QD-LEDs. Poly(4-butylphenyl-diphenyl-amine) (poly-TPD) and tris[2,4,6-trimethyl-3-(pyridin-3-yl)phenyl]borane (3TPYMB) molecules were used as hole-transporting and electron-transporting layers, respectively. The emission, current efficiency, and driving characteristics of QD-LEDs with 50, 65 nm thick 3TPYMB layers were investigated. The QD-LED with a 50 nm thick 3TPYMB layer exhibited a maximum current efficiency of 1.3 cd/A.

Interlayers of polymer tandem solar cells

  • Kim, Tae-Hui;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.318-318
    • /
    • 2010
  • We present the effect of interlayers of polymer tandem solar cells on their photovoltaic performance. P-type and n-type interlayers are essential for the series-connection of the subcells and enable to form the tandem cell architecture by the solution processing. In this study, we use PEDOT:PSS, nanocrystalline $TiO_2$, and blends of semiconducting polymers and fullerene derivatives as a hole transporting layer, electron transporting layer, and photoactive layers, respectively. We show that photovoltaic performances of polymer tandem solar cells depending on various PEDOT:PSS layers with the different electric conductivity and the various $TiO_2$ layer thickness.

  • PDF

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong;Yoo, Yongseok;Jeong, Taehee;Ahn, SeJin;Ko, Min Jae
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.657-668
    • /
    • 2018
  • Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

Synthesis of Conjugated Polymers with Fluorene and Biphenylamine and Application to PLED Devices

  • Park, Eun-Jung;Kwon, Hyeok-Yong;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.458-460
    • /
    • 2008
  • Four kinds of copolymers with fluorene and biphenylamine units were synthesized by palladium-catalyzed polycondensation reaction. These polymers were characterized in terms of their UV/Visible and photoluminescence (PL) properties in solution and film state. These polymers were also studied as a hole transporting material in the polymer light emitting diode (PLED) devices.

  • PDF

Novel Host materials for Phosphorescent OLEDs with long lifetime

  • Kim, Young-Hoon;Yu, Eun-Sun;Kim, Nam-Soo;Jung, Sung-Hyun;Kim, Hyung-Sun;Lee, Ho-Jae;Kang, Eui-Su;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.549-552
    • /
    • 2008
  • We have developed a novel bipolar host material with both electron and hole transporting characteristics. Since CGH(Cheil Green Host) has some electron transporting characteristics, it shows increased luminance efficiency in device including TCTA and without HBL(hole blocking layer:BAlq). Maximum power efficency of CGH was 27.4lm/W at the device structure ITO/DNTPD(60)/NPB(20)/TCTA(10)/EML(30)/Alq3(20)/LIF(1)/Al. We measured device performance again without HBL. The result of CGH showing 26.0lm/W is outstanding compared to that of CBP showing 19.1lm/W without holeblocking layer. We also measured lifetime and found to be 205hr at 3000nit, that is significant result compared to the life time of CBP device showing 82hr. CGH shows high device performance with holeblocking layer. Moreover, it shows better device performance and life time than those of CBP without holeblocking.

  • PDF

페로브스카이트 태양전지용 홀 전도체 개발과 비납계 페로브스카이트 연구 동향

  • Song, Myeong-Gwan
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.98-111
    • /
    • 2018
  • The lead-based perovskite (CH3NH3PbI3) material has a high molar coefficient, high crystallinity at low temperature, and long range of balanced electron-hole transport length. In addition, PCE of perovskite solar cells (PSCs) has been dramatically improved by over 22% by amending the electronic quality of perovskite and by using state-of-the-art hole transporting materials (HTMs) such as tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) due to enhanced charge transport toward the electrode via properly aligned energy levels with respect to the perovskite. Replacing the spiro-OMeTAD with new HTMs with the desired properties of appropriate energy levels, high hole mobility in its pristine form, low cost, and easy processable materials is necessary for attaining highly efficient and stable PSCs, which are anticipated to be truly compatible for practical application. Furthermore, Recently Pb-free perovskite materials much attention as an alternative light-harvesting active layer material instead of lead based perovskite in photovoltaic cells. In this work, we demonstrate a Pb-free perovskite material for the light harvesting and emitter as optoelectronic devices.

Fluorescent white organic light-emitting diode structures with dye doped hole transporting layer

  • Galbadrakh, R.;Bang, H.S.;Baek, H.I.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1407-1410
    • /
    • 2007
  • This work reports on three primary color fluorescent white organic light emitting diode (WOLED) with simple device structure where only a part of the hole transporting layer was doped with dye. The maximum luminance of the device reaches $35000\;cd/m^2$ at a drive voltage below 11V and external quantum efficiency of the device is above 1% in the wide range of luminance from 10 to $35000\;cd/m^2$ and reaches its highest 1.6% at $500\;cd/m^2$. The chromaticity coordinate shift of the device is negligible in this wide range of luminance. The blue shift of emission color with an increase of current density was attributed to the narrowing of recombination zone width with raise of current density.

  • PDF

Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer

  • Leem, Dong-Seok;Park, Hyung-Dol;Kang, Jae-Wook;Lee, Se-Hyung;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1650-1653
    • /
    • 2007
  • We demonstrate fluorescent green organic lightemitting diodes employing a rhenium oxide ($ReO_3$)-doped N,N-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) hole transporting layer (HTL). The devices exhibit significantly reduced driving voltages as well as prolonged lifetime. Details of $ReO_3$ doping effects are described in terms of charge transfer complex and stabilization of HTL morphology.

  • PDF

Effect of Hole-Transporting Layer and Solvent in Solution Processed Highly-Efficient Small Molecule Organic Light-Emitting Diodes

  • Jo, Min-Jun;Hwang, Won-Tae;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.250-250
    • /
    • 2012
  • Organic light-emitting diodes (OLED) and polymer light emitting diodes (PLED) have been regarded as the candidate for the next generation light source and flat panel display. Currently, the most common OLED industrial fabrication technology used in producing real products utilizes a fine shadow mask during the thermal evaporation of small molecule materials. However, due to high potential including low cost, easy process and scalability, various researches about solution process are progressed. Since polymer has some disadvantages such as short lifetime and difficulty of purifying, small molecule OLED (SMOLED) can be a good alternative. In this work, we have demonstrated high efficient solution-processed OLED with small molecule. We use CBP (4,4'-N,N'-dicarbazolebiphenyl) as a host doped with green dye (Ir(ppy)3 (fac-tris(2-phenyl pyridine) iridium)). PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and TPD (N,N'diphenyl-N,N'-Bis (3-methylphenyl)-[1,1-biphenyl]-4,4'-diamine) are employed as an electron transport material and a hole transport material. And TPBi (2,2',2''-(1,3,5-phenylene) tris (1-phenyl-1H-benzimidazole)) is used as an hole blocking layer for proper hole and electron balance. With adding evaporated TPBi layer, the current efficiency was very improved. Among various parameters, we observed the property of OLED device by changing the thickness of hole transporting layer and solvent which can dissolve organic material. We could make small molecule OLED device with finding proper conditions.

  • PDF

The Microscopic Surface Properties of Rhodamine Derivatives in EL System (EL시스템의 Rhodamine 유도체화합물의 표면특성)

  • 박수길;조성렬;손원근;조병호;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.265-268
    • /
    • 1997
  • Electroluminescent(EL) devices are constructed using multilayer organic thin film. A cell structure of glass substrate/Indium-Tinoxide/TPD as a hole transporting layer/Alq3+Rhodamine 101 perchrolate(Red3) as an emitting layer/Alq3 as an electrron transporting layer/Al as an electrode was employed. Optimal thickness of emitting layer in EL cell was performed from the viewpoint of the electronics properties of emitting layers. The general vapor-deposition method was used to control the thickness of omitting layer in EL devices and electro-optical characteristics were measured. It is clarified that controlling thickness of emitting layer in vapor-deposition film had an effect on the change of carrier injection and EL spectrum. The intensity of red omission with luminance of 81cd/$m^2$ was achived at 11V driving voltage. The surface morphology of emitting layer in EL devices was investigated.

  • PDF