• 제목/요약/키워드: histone H4

검색결과 123건 처리시간 0.033초

Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

  • Lee, Jae-Young;Kim, Dae-Kwan;Ko, Jeong-Jae;Kim, Keun Pil;Park, Kyung-Soon
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권2호
    • /
    • pp.141-147
    • /
    • 2016
  • Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (${\gamma}H2AX$), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process.

Differential Protein Quantitation in Mouse Neuronal Cell Lines using Amine-Reactive Isobaric Tagging Reagents with Tandem Mass Spectrometry

  • Cho, Kun;Park, Gun-Wook;Kim, Jin-Young;Lee, Sang-Kwang;Oh, Han-Bin;Yoo, Jong-Shin
    • Mass Spectrometry Letters
    • /
    • 제1권1호
    • /
    • pp.25-28
    • /
    • 2010
  • The high-throughput identification and accurate quantification of proteins are essential strategies for exploring cellular functions and processes in quantitative proteomics. Stable isotope tagging is a key technique in quantitative proteomic research, accompanied by automated tandem mass spectrometry. For the differential proteome analysis of mouse neuronal cell lines, we used a multiplexed isobaric tagging method, in which a four-plex set of amine-reactive isobaric tags are available for peptide derivatization. Using the four-plex set of isobaric tag for relative and absolute quantitation (iTRAQ) reagents, we analyzed the differential proteome in several stroke time pathways (0, 4, and 8 h) after the mouse neuronal cells have been stressed using a glutamate oxidant. In order to obtain a list of the differentially expressed proteins, we selected those proteins which had apparently changed significantly during the stress test. With 95% of the peptides showing only a small variation in quantity before and after the test, we obtained a list of eight up-regulated and four down-regulated proteins for the stroke time pathways. To validate the iTRAQ approach, we studied the use of oxidant stresses for mouse neuronal cell samples that have shown differential proteome in several stroke time pathways (0, 4, and 8 h). Results suggest that histone H1 might be the key protein in the oxidative injury caused by glutamate-induced cytotoxicity in HT22 cells.

시토신 탈메틸화 관련 NtROS2a 유전자 발현을 제어한 RNAi 식물의 DNA microarray 분석 (DNA microarray analysis of RNAi plant regulated expression of NtROS2a gene encoding cytosine DNA demethylation)

  • 최장선;이인혜;정유진;강권규
    • Journal of Plant Biotechnology
    • /
    • 제43권2호
    • /
    • pp.231-239
    • /
    • 2016
  • 담배에서 후성유전관련 유전자의 발현연구를 위해 담배유래 시토신 DNA 탈메틸화 관련 NtROS2a 유전자를 과발현 및 RNAi 식물체를 육성하였다. 이들 형질전환체들은 고염 및 산화 스트레스하에서 내성이 증진되었으며, 다양한 표현형변이를 보였다(Lee et al. 2015). 본연구에서는 선발된 과발현 (OX1), RNAi 식물체(RNAi 13) 및 대조식물체(WT)를 이용하여 Agilent Tobacco 4 X 44K Oligo chip으로 microarray분석을 수행하였다. OX1과 RNAi13 계통을 이용하여 WT과 함께 비교 분석한 결과, 대부분 세포 내 이온 수송, 영양 공급 등과 같은 물질대사와 생물적 비생물적 스트레스 및 methylation과 관련되어 영향을 주는 유전자들에서 up-regulation 되었고, 물질대사관련 유전자와 세포 내 기능유전자의 역할을 담당하는 조효소, 그리고 다양한 스트레스 및 메틸레이션 관련 유전자군에서 또한 down-regulation되었다. 각각의 up-, down-regulation된 유전자들을 WT과 비교하여 qRT-PCR을 수행한 결과, KH domain-containing protein, MADS-box protein 및 Zinc phosphodiesterase ELAC protein 유전자들에서 발현이 높게 나타났으며, 반면에 pentatricopeptide (PPR) repeat-containing protein, histone deacetylase HDAC3 protein 및 protein kinase는 0.4 ~ 1.0-fold 발현양이 감소되었다. 따라서 DNA glycosylase를 암호화하는 NtROS2a 유전자는 demethylation과 관련되어 담배 식물체에서 다양한 전사레벨을 조절하는 것으로 판단된다.

A New Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells

  • Richa, Sachan;Dey, Prasanta;Park, Chaeun;Yang, Jungho;Son, Ji Yeon;Park, Jae Hyeon;Lee, Su Hyun;Ahn, Mee-Young;Kim, In Su;Moon, Hyung Ryong;Kim, Hyung Sik
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.184-194
    • /
    • 2020
  • Histone deacetylase (HDAC) inhibitors represent a novel class of anticancer agents, which can be used to inhibit cell proliferation and induce apoptosis in several types of cancer cells. In this study, we investigated the anticancer activity of MHY4381, a newly synthesized HDAC inhibitor, against human prostate cancer cell lines and compared its efficacy with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. We assessed cell viability, apoptosis, cell cycle regulation, and other biological effects in the prostate cancer cells. We also evaluated a possible mechanism of MHY4381 on the apoptotic cell death pathway. The IC50 value of MHY4381 was lower in DU145 cells (IC50=0.31 µM) than in LNCaP (IC50=0.85 µM) and PC-3 cells (IC50=5.23 µM). In addition, the IC50 values of MHY4381 measured in this assay were significantly lower than those of SAHA against prostate cancer cell lines. MHY4381 increased the levels of acetylated histones H3 and H4 and reduced the expression of HDAC proteins in the prostate cancer cell lines. MHY4381 increased G2/M phase arrest in DU145 cells, and G1 arrest in LNCaP cells. It also activated reactive oxygen species (ROS) generation, which induced apoptosis in the DU145 and LNCaP cells by increasing the ratio of Bax/Bcl-2 and releasing cytochrome c into the cytoplasm. Our results indicated that MHY4381 preferentially results in antitumor effects in DU145 and LNCaP cells via mitochondria-mediated apoptosis and ROS-facilitated cell death pathway, and therefore can be used as a promising prostate cancer therapeutic.

Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과 (Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A)

  • 남기열
    • KSBB Journal
    • /
    • 제7권4호
    • /
    • pp.302-307
    • /
    • 1992
  • protein phosphatase 2A는 bovine brain homogenate의 세포질 fraction에서 얻어졌다. 기질로서 인산화된 histione H1을 이용하여 측정한 phosphatase 의 활성은 dipalmitoyIphophatidylcholine(DPPC) 혹은 phosphatidylserine/DPPC의 혼합물로 구성된 liposome의 존재하에서 저해되었다. Protein phosphatase 2A의 lipid membrane에의 결합은 다중층 지질막의 혼합물 계에서 liposome 의 양이 증가함에 따라서 상등액 중의 phosphatase의 활성이 감소하는 것으로 확인할 수 있었다. 또한 [$^{125}I$]protein phosphatase 2A가 liposome과 동시에 용출되는 것으로도 확인되었다. 그러나 liposome에 대한 protein phosphatase의 친화력은 높지 않았다. 한편, okadaic acid와 liposome은 협동으로 phosphatase의 활성을 감소시켰다. 이것은 okadaic acid가 lipid membrane이나 membrane에 결함한 phosphatase에는 결합하지 않는다는 것을 의미한다. 그러므로 lipid membrane에 의한 protein phosphatase 2A의 활성 저해 효과는 phosphatase 2A와 lipid membrane과의 결합에 의한 것이라고 설명될 수있다.

  • PDF

Hyperoside Protects Cells against Gamma Ray Radiation-Induced Apoptosis in Hamster Lung Fibroblast

  • Piao, Mei Jing;Kim, Ki Cheon;Cho, Suk Ju;Chae, Sungwook;Kang, Sam Sik;Hyun, Jin Won
    • Natural Product Sciences
    • /
    • 제19권2호
    • /
    • pp.127-136
    • /
    • 2013
  • Ionizing radiation, including that evoked by gamma (${\gamma}$)-rays, induces oxidative stress through the generation of reactive oxygen species, resulting in apoptosis, or programmed cell death. This study aimed to elucidate the radioprotective effects of hyperoside (quercetin-3-O-galactoside) against ${\gamma}$-ray radiation-induced apoptosis in Chinese hamster lung fibroblasts, V79-4 and demonstrated that the compound reduced levels of intracellular reactive oxygen species in ${\gamma}$-ray-irradiated cells. Hyperoside also protected irradiated cells against DNA damage (evidenced by pronounced DNA tails and elevated phospho-histone H2AX and 8-oxoguanine content) and membrane lipid peroxidation. Furthermore, hyperoside prevented the ${\gamma}$-ray-provoked reduction in cell viability via the inhibition of apoptosis through the increased levels of Bcl-2, the decreased levels of Bax and cytosolic cytochrome c, and the decrease of the active caspase 9 and caspase 3 expression. Taken together, these results suggest that hyperoside defend cells against ${\gamma}$-ray radiation-induced apoptosis by inhibiting oxidative stress.

Multi-dimensional analyses of plant chromosomes and genomes.

  • Fukui, Kiichi;Ohmido, Nobuko;Wako, Toshiyuki
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1998년도 The 12th Symposium on Plant Biotechnology Vol.12
    • /
    • pp.61-70
    • /
    • 1998
  • Genome and chromosome analyses in plants using fluorescence in situ hybridization (FISH) and immuno-staining (IMS) methods are reviewed by presenting the recent results obtained by the Chromosome Link, a group of chromosome and genome researchers. FISH is now effective to detect unique nucleotide sequences with 153 bp on the extended DNA fibers. Genomic in situ hybridization (GISH) also allows painting plant chromosomes of different genomes. GISH is quite effective to detect the genomic differentiation in the individual chromosomes within a nucleus. Three dimensional (3D) analyses are now available by confocal microscopy and a deconvolution system. These techniques are invaluable to visualize both the structural and functional dynamics within a nucleus. 3D-FISH revealed the spatial differentiation of different genomees within a nucleus. 3D-FISH also proved structural partition of centromeric and telomeric domains within a barely nucleus. The dynamic acetylation of histone H4 at the specific regions of a genome during a cell cycle is also analyzed using 3D-IMS. It is anticipated that these methods will provide us powerful tools to understand the structural and functional significance of plant chromosomes and genomes.

  • PDF

Setdb1 Is Required for Myogenic Differentiation of C2C12 Myoblast Cells via Maintenance of MyoD Expression

  • Song, Young Joon;Choi, Jang Hyun;Lee, Hansol
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.362-372
    • /
    • 2015
  • Setdb1, an H3-K9 specific histone methyltransferase, is associated with transcriptional silencing of euchromatic genes through chromatin modification. Functions of Setdb1 during development have been extensively studied in embryonic and mesenchymal stem cells as well as neurogenic progenitor cells. But the role of Sedtdb1 in myogenic differentiation remains unknown. In this study, we report that Setdb1 is required for myogenic potential of C2C12 myoblast cells through maintaining the expressions of MyoD and muscle-specific genes. We find that reduced Setdb1 expression in C2C12 myoblast cells severely delayed differentiation of C2C12 myoblast cells, whereas exogenous Setdb1 expression had little effect on. Gene expression profiling analysis using oligonucleotide microarray and RNA-Seq technologies demonstrated that depletion of Setdb1 results in downregulation of MyoD as well as the components of muscle fiber in proliferating C2C12 cells. In addition, exogenous expression of MyoD reversed transcriptional repression of MyoD promoter-driven luciferase reporter by Setdb1 shRNA and rescued myogenic differentiation of C2C12 myoblast cells depleted of endogenous Setdb1. Taken together, these results provide new insights into how levels of key myogenic regulators are maintained prior to induction of differentiation.

Incidence of Alternaria Species Associated with Watermelon Leaf Blight in Korea

  • Kwon, Oh-Kyu;Jeong, A-Ram;Jeong, Yong-Jik;Kim, Young-Ah;Shim, Jaekyung;Jang, Yoon Jeong;Lee, Gung Pyo;Park, Chang-Jin
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.329-338
    • /
    • 2021
  • Alternaria leaf blight is one of the most common diseases in watermelon worldwide. In Korea, however, the Alternaria species causing the watermelon leaf blight have not been investigated thoroughly. A total of 16 Alternaria isolates was recovered from diseased watermelon leaves with leaf blight symptoms, which were collected from 14 fields in Korea. Analysis of internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and RNA polymerase II second largest subunit (RPB2) were not competent to differentiate the Alternaria isolates. On the contrary, analysis of amplicon size of the histone H3 (HIS3) gene successfully differentiated the isolates into three Alternaria subgroups, and further sequence analysis of them identified three Alternaria spp. Alternaria tenuissima, A. gaisen, and A. alternata. Representative Alternaria isolates from three species induced dark brown leaf spot lesions on detached watermelon leaves, indicating that A. tenuissima, A. gaisen, and A. alternata are all causal agents of Alternaria leaf blight. Our results indicate that the Alternaria species associated watermelon leaf blight in Korea is more complex than reported previously. This is the first report regarding the population structure of Alternaria species causing watermelon leaf blight in Korea.

Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct

  • Guo, Jing;He, Hongjuan;Liu, Qi;Zhang, Fengwei;Lv, Jie;Zeng, Tiebo;Gu, Ning;Wu, Qiong
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.859-865
    • /
    • 2015
  • Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5-E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.