DOI QR코드

DOI QR Code

Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct

  • Guo, Jing (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology) ;
  • He, Hongjuan (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology) ;
  • Liu, Qi (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology) ;
  • Zhang, Fengwei (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology) ;
  • Lv, Jie (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology) ;
  • Zeng, Tiebo (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology) ;
  • Gu, Ning (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology) ;
  • Wu, Qiong (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
  • Received : 2015.04.09
  • Accepted : 2015.07.13
  • Published : 2015.10.31

Abstract

Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5-E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.

Keywords

References

  1. Atwood, C.S., Meethal, S.V., Liu, T., Wilson, A.C., Gallego, M., Smith, M.A., and Bowen, R.L. (2005). Dysregulation of the hypothalamic-pituitary-gonadal axis with menopause and andropause promotes neurodegenerative senescence. J. Neuropathol. Exp. Neurol. 64, 93-103. https://doi.org/10.1093/jnen/64.2.93
  2. Brideau, C.M., Eilertson, K.E., Hagarman, J.A., Bustamante, C.D., and Soloway, P.D. (2010). Successful computational prediction of novel imprinted genes from epigenomic features. Mol. Cell. Biol. 30, 3357-3370. https://doi.org/10.1128/MCB.01355-09
  3. Busby, W.H., Quackenbush, G.E., Humm, J., Youngblood, W.W., and Kizer, J.S. (1987). An enzyme(s) that converts glutaminylpeptides into pyroglutamyl-peptides - presence in pituitary, brain, adrenal-medulla, and lymphocytes. J. Biol. Chem. 262, 8532-8536.
  4. Carr, M.S., Yevtodiyenko, A., Schmidt, C.L., and Schmidt, J.V. (2007). Allele-specific histone modifications regulate expression of the Dlk1-Gtl2 imprinted domain. Genomics 89, 280-290. https://doi.org/10.1016/j.ygeno.2006.10.005
  5. Charalambous, M., Cowley, M., Geoghegan, F., Smith, F.M., Radford, E.J., Marlow, B.P., Graham, C.F., Hurst, L.D., and Ward, A. (2010). Maternally-inherited Grb10 reduces placental size and efficiency. Dev. Biol. 337, 1-8. https://doi.org/10.1016/j.ydbio.2009.10.011
  6. Coan, P.M., Burton, G.J., and Ferguson-Smith, A.C. (2005). Imprinted genes in the placenta--a review. Placenta 26 Suppl A, S10-20. https://doi.org/10.1016/j.placenta.2004.12.009
  7. Da Silveira Mitteldorf, C.A., de Sousa-Canavez, J.M., Leite, K.R., Massumoto, C., and Camara-Lopes, L.H. (2011). FN1, GALE, MET, and QPCT overexpression in papillary thyroid carcinoma: molecular analysis using frozen tissue and routine fine-needle aspiration biopsy samples. Diagn Cytopathol. 39, 556-561. https://doi.org/10.1002/dc.21423
  8. Doherty, A.S., Mann, M.R.W., Tremblay, K.D., Bartolomei, M.S., and Schultz, R.M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526-1535. https://doi.org/10.1095/biolreprod62.6.1526
  9. Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463. https://doi.org/10.1038/nature02625
  10. Fischer, W.H., and Spiess, J. (1987). Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc. Natl. Acad. Sci. USA 84, 3628-3632. https://doi.org/10.1073/pnas.84.11.3628
  11. Gillis, J.S. (2006). Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy. J. Transl. Med. 4, 27. https://doi.org/10.1186/1479-5876-4-27
  12. Grewal, S.I.S., and Elgin, S.C. (2002). Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178-187. https://doi.org/10.1016/S0959-437X(02)00284-8
  13. Grigoriu, A., Ferreira, J.C., Choufani, S., Baczyk, D., Kingdom, J., and Weksberg, R. (2011). Cell specific patterns of methylation in the human placenta. Epigenetics 6, 368-379. https://doi.org/10.4161/epi.6.3.14196
  14. Hagarman, J.A., Motley, M.P., Kristjansdottir, K., and Soloway, P.D. (2013). Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLoS One 8, e53880. https://doi.org/10.1371/journal.pone.0053880
  15. Hartlage-Rubsamen, M., Staffa, K., Waniek, A., Wermann, M., Hoffmann, T., Cynis, H., Schilling, S., Demuth, H.U., and Rossner, S. (2009). Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int. J. Dev. Neurosci. 27, 825-835. https://doi.org/10.1016/j.ijdevneu.2009.08.007
  16. Iourov, I.Y., Vorsanova, S.G., Kurinnaaya, O.S., Kolotii, A.D., Demidova, I.A., Kravets, V.S., and Yurov, Y.B. (2014). The use of molecular cytogenetic and cytogenetic techniques for the diagnosis of Prader-Willi and Angelman syndrome. Zh. Nevrol. Psikhiatr. Im. S S Korsakova 114, 49-53. https://doi.org/10.17116/jnevro201411411249-54
  17. Jarzab, B., Wiench, M., Fujarewicz, K., Simek, K., Jarzab, M., Oczko-Wojciechowska, M., Wloch, J., Czarniecka, A., Chmielik, E., Lange, D., et al. (2005). Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res. 65, 1587-1597. https://doi.org/10.1158/0008-5472.CAN-04-3078
  18. Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662-673. https://doi.org/10.1038/nrg887
  19. Lim, A.L., and Ferguson-Smith, A.C. (2010). Genomic imprinting effects in a compromised in utero environment: implications for a healthy pregnancy. Semin. Cell Dev. Biol. 21, 201-208. https://doi.org/10.1016/j.semcdb.2009.10.008
  20. Mann, M.R.W., Lee, S.S., Doherty, A.S., Verona, R.I., Nolen, L.D., Schultz, R.M., and Bartolomei, M.S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727-3735. https://doi.org/10.1242/dev.01241
  21. McDonald, L.E., Paterson, C.A., and Kay, G.F. (1998). Bisulfite genomic sequencing-derived methylation profile of the Xist gene throughout early mouse development. Genomics 54, 379-386. https://doi.org/10.1006/geno.1998.5570
  22. Messer, M., and Ottesen, M. (1964). Isolation and properties of glutamine cyclotransferase of dried Papaya Latex. Biochim. Biophys. Acta 92, 409-411.
  23. Moorman, A.F., Houweling, A.C., de Boer, P.A., and Christoffels, V.M. (2001). Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J. Histochem. Cytochem. 49, 1-8. https://doi.org/10.1177/002215540104900101
  24. Morris, M.R., Ricketts, C.J., Gentle, D., McRonald, F., Carli, N., Khalili, H., Brown, M., Kishida, T., Yao, M., Banks, R.E., et al. (2011). Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30, 1390-1401. https://doi.org/10.1038/onc.2010.525
  25. Nafee, T.M., Farrell, W.E., Carroll, W.D., Fryer, A.A., and Ismail, K.M. (2008). Epigenetic control of fetal gene expression. BJOG 115, 158-168.
  26. Novakovic, B., and Saffery, R. (2012). The ever growing complexity of placental epigenetics - Role in adverse pregnancy outcomes and fetal programming. Placenta 33, 959-970. https://doi.org/10.1016/j.placenta.2012.10.003
  27. Okae, H., Hiura, H., Nishida, Y., Funayama, R., Tanaka, S., Chiba, H., Yaegashi, N., Nakayama, K., Sasaki, H., and Arima, T. (2012). Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum. Mol. Genet. 21, 548-558. https://doi.org/10.1093/hmg/ddr488
  28. Plasschaert, R.N., and Bartolomei, M.S. (2014). Genomic imprinting in development, growth, behavior and stem cells. Development 141, 1805-1813. https://doi.org/10.1242/dev.101428
  29. Prissette, M., El-Maarri, O., Arnaud, D., Walter, J., and Avner, P. (2001). Methylation profiles of DXPas34 during the onset of Xinactivation. Hum. Mol. Genet. 10, 31-38. https://doi.org/10.1093/hmg/10.1.31
  30. Reik, W., and Dean, W. (2001). DNA methylation and mammalian epigenetics. Electrophoresis 22, 2838-2843. https://doi.org/10.1002/1522-2683(200108)22:14<2838::AID-ELPS2838>3.0.CO;2-M
  31. Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172-182. https://doi.org/10.1006/dbio.2001.0501
  32. Schilling, S., Wasternack, C., and Demuth, H.U. (2008). Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol. Chem. 389, 983-991.
  33. Schulz, R., Proudhon, C., Bestor, T.H., Woodfine, K., Lin, C.S., Lin, S.P., Prissette, M., Oakey, R.J., and Bourc'his, D. (2010). The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet. 6, e1001214. https://doi.org/10.1371/journal.pgen.1001214
  34. Shiura, H., Nakamura, K., Hikichi, T., Hino, T., Oda, K., Suzuki- Migishima, R., Kohda, T., Kaneko-ishino, T., and Ishino, F. (2009). Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation. Hum. Mol. Genet. 18, 1424-1438. https://doi.org/10.1093/hmg/ddp049
  35. Singh, P., and Szabo, P.E. (2012). Chromatin immunoprecipitation to characterize the epigenetic profiles of imprinted domains. Methods Mol. Biol. 925, 159-172. https://doi.org/10.1007/978-1-62703-011-3_10
  36. Trasler, J.M. (2006). Gamete imprinting: setting epigenetic patterns for the next generation. Reprod. Fert. Dev. 18, 63-69. https://doi.org/10.1071/RD05118
  37. Wang, X., Soloway, P.D., and Clark, A.G. (2011). A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics 189, 109-122. https://doi.org/10.1534/genetics.111.130088
  38. Wang, X., Miller, D.C., Harman, R., Antczak, D.F., and Clark, A.G. (2013). Paternally expressed genes predominate in the placenta. Proc. Natl. Acad. Sci. USA 110, 10705-10710. https://doi.org/10.1073/pnas.1308998110
  39. Wilkinson, D.G., and Nieto, M.A. (1993). Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361-373. https://doi.org/10.1016/0076-6879(93)25025-W
  40. Yamasaki-Ishizaki, Y., Kayashima, T., Mapendano, C.K., Soejima, H., Ohta, T., Masuzaki, H., Kinoshita, A., Urano, T., Yoshiura, K., Matsumoto, N., et al. (2007). Role of DNA methylation and histone H3 lysine 27 methylation in tissue-specific imprinting of mouse Grb10. Mol. Cell. Biol. 27, 732-742. https://doi.org/10.1128/MCB.01329-06

Cited by

  1. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study vol.10, pp.4, 2018, https://doi.org/10.3390/nu10040417