Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.074

A New Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells  

Richa, Sachan (School of Pharmacy, Sungkyunkwan University)
Dey, Prasanta (School of Pharmacy, Sungkyunkwan University)
Park, Chaeun (College of Pharmacy, Pusan National University)
Yang, Jungho (College of Pharmacy, Pusan National University)
Son, Ji Yeon (School of Pharmacy, Sungkyunkwan University)
Park, Jae Hyeon (School of Pharmacy, Sungkyunkwan University)
Lee, Su Hyun (School of Pharmacy, Sungkyunkwan University)
Ahn, Mee-Young (Major in Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University)
Kim, In Su (School of Pharmacy, Sungkyunkwan University)
Moon, Hyung Ryong (College of Pharmacy, Pusan National University)
Kim, Hyung Sik (School of Pharmacy, Sungkyunkwan University)
Publication Information
Biomolecules & Therapeutics / v.28, no.2, 2020 , pp. 184-194 More about this Journal
Abstract
Histone deacetylase (HDAC) inhibitors represent a novel class of anticancer agents, which can be used to inhibit cell proliferation and induce apoptosis in several types of cancer cells. In this study, we investigated the anticancer activity of MHY4381, a newly synthesized HDAC inhibitor, against human prostate cancer cell lines and compared its efficacy with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. We assessed cell viability, apoptosis, cell cycle regulation, and other biological effects in the prostate cancer cells. We also evaluated a possible mechanism of MHY4381 on the apoptotic cell death pathway. The IC50 value of MHY4381 was lower in DU145 cells (IC50=0.31 µM) than in LNCaP (IC50=0.85 µM) and PC-3 cells (IC50=5.23 µM). In addition, the IC50 values of MHY4381 measured in this assay were significantly lower than those of SAHA against prostate cancer cell lines. MHY4381 increased the levels of acetylated histones H3 and H4 and reduced the expression of HDAC proteins in the prostate cancer cell lines. MHY4381 increased G2/M phase arrest in DU145 cells, and G1 arrest in LNCaP cells. It also activated reactive oxygen species (ROS) generation, which induced apoptosis in the DU145 and LNCaP cells by increasing the ratio of Bax/Bcl-2 and releasing cytochrome c into the cytoplasm. Our results indicated that MHY4381 preferentially results in antitumor effects in DU145 and LNCaP cells via mitochondria-mediated apoptosis and ROS-facilitated cell death pathway, and therefore can be used as a promising prostate cancer therapeutic.
Keywords
HDAC inhibitor; MHY4381; Prostate cancer; Apoptosis; Reactive oxygen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bao, L., Diao, H., Dong, N., Su, X., Wang, B., Mo, Q., Yu, H., Wang, X. and Chen, C. (2016) Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol. Toxicol. 32, 469-482.   DOI
2 Bilusic, M., Madan, R. A. and Gulley, J. L. (2017) Immunotherapy of prostate cancer: facts and hopes. Clin. Cancer Res. 23, 6764-6770.   DOI
3 Bishayee, K., Khuda-Bukhsh, A. R. and Huh, S. O. (2015) PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells 38, 518-527.   DOI
4 Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A. and Richon, V. M. (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165-5170.
5 Dokmanovic, M., Clarke, C. and Marks, P. A. (2007) Histone deacetylase inhibitors: overview and perspectives. Mol. Cancer Res. 5, 981-989.   DOI
6 Dokmanovic, M. and Marks, P. A. (2005) Prospects: histone deacetylase inhibitors. J. Cell Biochem. 96, 293-304.   DOI
7 Ducasse, M. and Brown, M. A. (2006) Epigenetic aberrations and cancer. Mol. Cancer 5, 60.   DOI
8 Eckschlager, T., Plch, J., Stiborova, M. and Hrabeta, J. (2017) Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 18, E1414.   DOI
9 Feng, W., Cai, D., Zhang, B., Lou, G. and Zou, X. (2015) Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed. Pharmacother. 74, 257-264.   DOI
10 Perry, A. S., Watson, R. W., Lawler, M. and Hollywood, D. (2010) The epigenome as a therapeutic target in prostate cancer. Nat. Rev. Urol. 7, 668-680.   DOI
11 Richon, V. M., Sandhoff, T. W., Rifkind, R. A. and Marks, P. A. (2000) Histone deacetylase inhibitor selectively induces $p21^{WAF1}$ expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. U.S.A. 97, 10014-10019.   DOI
12 Robert, C. and Rassool, F. V. (2012) HDAC inhibitors: roles of DNA damage and repair. Adv. Cancer Res. 116, 87-129.   DOI
13 Ropero, S. and Esteller, M. (2007) The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1, 19-25.   DOI
14 Rosato, R. R., Almenara, J. A., Maggio, S. C., Coe, S., Atadja, P., Dent, P. and Grant, S. (2008) Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Mol. Cancer Ther. 7, 3285-3297.   DOI
15 Keizman, D. and Eisenberger, M. (2010) Is there a role for chemotherapy in nonmetastatic prostate cancer? Curr. Opin. Support Palliat. Care 4, 141-146.   DOI
16 Ruefli, A. A., Ausserlechner, M. J., Bernhard, D., Sutton, V. R., Tainton, K. M., Kofler, R., Smyth, M. J. and Johnstone, R. W. (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 98, 10833-10838.   DOI
17 Ruscetti, M., Dadashian, E. L., Guo, W., Quach, B., Mulholland, D. J., Park, J. W., Tran, L. M., Kobayashi, N., Bianchi-Frias, D., Xing, Y., Nelson, P. S. and Wu, H. (2016) HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castrationresistant prostate cancer. Oncogene 35, 3781-3795.   DOI
18 Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. and Van Bree, C. (2006) Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319.   DOI
19 Ganai, S. A. (2016) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm. Biol. 54, 1926-1935.   DOI
20 Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432, 316-323.   DOI
21 Lee, J. H., Choy, M. L., Ngo, L., Venta-Perez, G. and Marks, P. A. (2011) Role of checkpoint kinase 1 (Chk1) in the mechanisms of resistance to histone deacetylase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 108, 19629-19634.   DOI
22 Komatsu, N., Kawamata, N., Takeuchi, S., Yin, D., Chien, W., Miller, C. W. and Koeffler, H. P. (2006) SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oncol. Rep. 15, 187-191.
23 Koryakina, Y., Knudsen, K. E. and Gioeli, D. (2015) Cell-cycle-dependent regulation of androgen receptor function. Endocr. Relat. Cancer 22, 249-264.   DOI
24 Kuban, D. A., Hoffman, K. E., Corn, P. and Pettaway, C. (2013) Prostate cancer. In 60 Years of Survival Outcomes at the University of Texas MD Anderson Cancer Center (M. A. Rodriguez, R. S. Walters and T. W. Burke, Eds.), pp. 35-43. Springer, New York.
25 Lin, J., Wang, C. and Kelly, W. K. (2013) Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions. Semin. Oncol. 40, 393-401.   DOI
26 Litwin, M. S. and Tan, H. J. (2017) The diagnosis and treatment of prostate cancer: a review. JAMA 317, 2532-2542.   DOI
27 Sambucetti, L. C., Fischer, D. D., Zabludoff, S., Kwon, P. O., Chamberlin, H., Trogani, N., Xu, H. and Cohen, D. (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem. 274, 34940-34947.   DOI
28 Alimirah, F., Chen, J., Basrawala, Z., Xin, H. and Choubey, D. (2006) DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: Implications for the androgen receptor functions and regulation. FEBS Lett. 580, 2294-2300.   DOI
29 Balk, S. P. (2009) Increased expression of genes converting adrenal androgens to testosterone in castration-recurrent prostate cancer. In Androgen Action in Prostate Cancer (J. Mohler and D. Tindall, Eds.), pp. 123-139. Springer, New York.
30 Balk, S. P. and Knudsen, K. E. (2008) AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal. 6, e001.
31 Schroder, F., Crawford, E. D., Axcrona, K., Payne, H. and Keane, T. E. (2012) Androgen deprivation therapy: past, present and future. BJU Int. 109 Suppl 6, 1-12.
32 Shankar, S. and Srivastava, R. K. (2008) Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv. Exp. Med. Biol. 615, 261-298.   DOI
33 Shrotriya, S., Gagan, D., Ramasamy, K., Raina, K., Barbakadze, V., Merlani, M., Gogilashvili, L., Amiranashvili, L., Mulkijanyan, K., Papadopoulos, K., Agarwal, C. and Agarwal, R. (2012) Poly[3-(3,4-dihydroxyphenyl) glyceric acid] from Comfrey exerts anti-cancer efficacy against human prostate cancer via targeting androgen receptor, cell cycle arrest and apoptosis. Carcinogenesis 33, 1572-1580.   DOI
34 Siegel, R. L., Miller, K. D. and Jemal, A. (2018) Cancer statistics, 2018. CA Cancer J. Clin. 68, 7-30.   DOI
35 Xu, Y., Chen, S. Y., Ross, K. N. and Balk, S. P. (2006) Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783-7792.   DOI
36 Telles, E. and Seto, E. (2012) Modulation of cell cycle regulators by HDACs. Front. Biosci. (Schol. Ed.) 4, 831-839.
37 Waltregny, D., North, B., Van Mellaert, F., De Leval, J., Verdin, E. and Castronovo, V. (2004) Screening of histone deacetylases (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur. J. Histochem. 48, 273-290.
38 Wang, H., Zhou, W., Zheng, Z., Zhang, P., Tu, B., He, Q. and Zhu, W. G. (2012) The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst.) 11, 146-156.   DOI
39 Wang, L. G., Ossowski, L. and Ferrari, A. C. (2001) Overexpressed androgen receptor linked to $p21^{WAF1}$ silencing may be responsible for androgen independence and resistance to apoptosis of a prostate cancer cell line. Cancer Res. 61, 7544-7551.
40 Weichert, W., Roske, A., Gekeler, V., Beckers, T., Stephan, C., Jung, K., Fritzsche, F. R., Niesporek, S., Denkert, C., Dietel, M. and Kristiansen, G. (2008) Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98, 604-610.   DOI
41 Yoon, S. and Eom, G. H. (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam. Med. J. 52, 1-11.   DOI
42 Zhao, Y., Lu, S., Wu, L., Chai, G., Wang, H., Chen, Y., Sun, J., Yu, Y., Zhou, W., Zheng, Q., Wu, M., Otterson, G. A. and Zhu, W. G. (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of $p21^{Waf1/Cip1}$. Mol. Cell. Biol. 26, 2782-2790.   DOI
43 Mottet, D. and Castronovo, V. (2008) Histone deacetylases: target enzymes for cancer therapy. Clin. Exp. Metastasis 25, 183-189.   DOI
44 Marks, P. A. (2010) The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin. Investig. Drugs 19, 1049-1066.   DOI
45 Marrocco, D. L., Tilley, W. D., Bianco-Miotto, T., Evdokiou, A., Scher, H. I., Rifkind, R. A., Marks, P. A., Richon, V. M. and Butler, L. M. (2007) Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther. 6, 51-60.   DOI
46 McLeod, A. B., Stice, J. P., Wardell, S. E., Alley, H. M., Chang, C. Y. and McDonnell, D. P. (2018) Validation of histone deacetylase 3 as a therapeutic target in castration-resistant prostate cancer. Prostate 78, 266-277.   DOI
47 Park, J. H., Jung, Y., Kim, T. Y., Kim, S. G., Jong, H. S., Lee, J. W., Kim, D. K., Lee, J. S., Kim, N. K., Kim, T. Y. and Bang, Y. J. (2004) Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin. Cancer Res. 10, 5271-5281.   DOI
48 Nair, H. K., Rao, K. V., Aalinkeel, R., Mahajan, S., Chawda, R. and Schwartz, S. A. (2004) Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin. Diagn. Lab. Immunol. 11, 63-69.   DOI
49 Niculescu, A. B., Chen, X., Smeets, M., Hengst, L., Prives, C. and Reed, S. I. (1998) Effects of $p21^{Cip1/Waf1}$ at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. 18, 629-643.   DOI
50 Park, J. W. and Han, J. W. (2019) Targeting epigenetics for cancer therapy. Arch. Pharm. Res. 42, 159-170.   DOI