Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0098

Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct  

Guo, Jing (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
He, Hongjuan (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Liu, Qi (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Zhang, Fengwei (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Lv, Jie (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Zeng, Tiebo (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Gu, Ning (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Wu, Qiong (School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology)
Abstract
Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5-E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.
Keywords
expression patterns; H3K4me3; imprinted gene; Qpct; placenta;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Grewal, S.I.S., and Elgin, S.C. (2002). Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178-187.   DOI   ScienceOn
2 Grigoriu, A., Ferreira, J.C., Choufani, S., Baczyk, D., Kingdom, J., and Weksberg, R. (2011). Cell specific patterns of methylation in the human placenta. Epigenetics 6, 368-379.   DOI
3 Hagarman, J.A., Motley, M.P., Kristjansdottir, K., and Soloway, P.D. (2013). Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLoS One 8, e53880.   DOI
4 Hartlage-Rubsamen, M., Staffa, K., Waniek, A., Wermann, M., Hoffmann, T., Cynis, H., Schilling, S., Demuth, H.U., and Rossner, S. (2009). Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int. J. Dev. Neurosci. 27, 825-835.   DOI   ScienceOn
5 Iourov, I.Y., Vorsanova, S.G., Kurinnaaya, O.S., Kolotii, A.D., Demidova, I.A., Kravets, V.S., and Yurov, Y.B. (2014). The use of molecular cytogenetic and cytogenetic techniques for the diagnosis of Prader-Willi and Angelman syndrome. Zh. Nevrol. Psikhiatr. Im. S S Korsakova 114, 49-53.   DOI
6 Jarzab, B., Wiench, M., Fujarewicz, K., Simek, K., Jarzab, M., Oczko-Wojciechowska, M., Wloch, J., Czarniecka, A., Chmielik, E., Lange, D., et al. (2005). Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res. 65, 1587-1597.   DOI   ScienceOn
7 Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662-673.   DOI   ScienceOn
8 Lim, A.L., and Ferguson-Smith, A.C. (2010). Genomic imprinting effects in a compromised in utero environment: implications for a healthy pregnancy. Semin. Cell Dev. Biol. 21, 201-208.   DOI   ScienceOn
9 Mann, M.R.W., Lee, S.S., Doherty, A.S., Verona, R.I., Nolen, L.D., Schultz, R.M., and Bartolomei, M.S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727-3735.   DOI   ScienceOn
10 McDonald, L.E., Paterson, C.A., and Kay, G.F. (1998). Bisulfite genomic sequencing-derived methylation profile of the Xist gene throughout early mouse development. Genomics 54, 379-386.   DOI   ScienceOn
11 Messer, M., and Ottesen, M. (1964). Isolation and properties of glutamine cyclotransferase of dried Papaya Latex. Biochim. Biophys. Acta 92, 409-411.
12 Moorman, A.F., Houweling, A.C., de Boer, P.A., and Christoffels, V.M. (2001). Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J. Histochem. Cytochem. 49, 1-8.   DOI   ScienceOn
13 Morris, M.R., Ricketts, C.J., Gentle, D., McRonald, F., Carli, N., Khalili, H., Brown, M., Kishida, T., Yao, M., Banks, R.E., et al. (2011). Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30, 1390-1401.   DOI   ScienceOn
14 Nafee, T.M., Farrell, W.E., Carroll, W.D., Fryer, A.A., and Ismail, K.M. (2008). Epigenetic control of fetal gene expression. BJOG 115, 158-168.
15 Novakovic, B., and Saffery, R. (2012). The ever growing complexity of placental epigenetics - Role in adverse pregnancy outcomes and fetal programming. Placenta 33, 959-970.   DOI   ScienceOn
16 Okae, H., Hiura, H., Nishida, Y., Funayama, R., Tanaka, S., Chiba, H., Yaegashi, N., Nakayama, K., Sasaki, H., and Arima, T. (2012). Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum. Mol. Genet. 21, 548-558.   DOI   ScienceOn
17 Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172-182.   DOI   ScienceOn
18 Plasschaert, R.N., and Bartolomei, M.S. (2014). Genomic imprinting in development, growth, behavior and stem cells. Development 141, 1805-1813.   DOI   ScienceOn
19 Prissette, M., El-Maarri, O., Arnaud, D., Walter, J., and Avner, P. (2001). Methylation profiles of DXPas34 during the onset of Xinactivation. Hum. Mol. Genet. 10, 31-38.   DOI   ScienceOn
20 Reik, W., and Dean, W. (2001). DNA methylation and mammalian epigenetics. Electrophoresis 22, 2838-2843.   DOI
21 Schilling, S., Wasternack, C., and Demuth, H.U. (2008). Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution. Biol. Chem. 389, 983-991.
22 Schulz, R., Proudhon, C., Bestor, T.H., Woodfine, K., Lin, C.S., Lin, S.P., Prissette, M., Oakey, R.J., and Bourc'his, D. (2010). The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet. 6, e1001214.   DOI   ScienceOn
23 Shiura, H., Nakamura, K., Hikichi, T., Hino, T., Oda, K., Suzuki- Migishima, R., Kohda, T., Kaneko-ishino, T., and Ishino, F. (2009). Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation. Hum. Mol. Genet. 18, 1424-1438.   DOI   ScienceOn
24 Singh, P., and Szabo, P.E. (2012). Chromatin immunoprecipitation to characterize the epigenetic profiles of imprinted domains. Methods Mol. Biol. 925, 159-172.   DOI   ScienceOn
25 Trasler, J.M. (2006). Gamete imprinting: setting epigenetic patterns for the next generation. Reprod. Fert. Dev. 18, 63-69.   DOI   ScienceOn
26 Yamasaki-Ishizaki, Y., Kayashima, T., Mapendano, C.K., Soejima, H., Ohta, T., Masuzaki, H., Kinoshita, A., Urano, T., Yoshiura, K., Matsumoto, N., et al. (2007). Role of DNA methylation and histone H3 lysine 27 methylation in tissue-specific imprinting of mouse Grb10. Mol. Cell. Biol. 27, 732-742.   DOI   ScienceOn
27 Wang, X., Soloway, P.D., and Clark, A.G. (2011). A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics 189, 109-122.   DOI
28 Wang, X., Miller, D.C., Harman, R., Antczak, D.F., and Clark, A.G. (2013). Paternally expressed genes predominate in the placenta. Proc. Natl. Acad. Sci. USA 110, 10705-10710.   DOI   ScienceOn
29 Wilkinson, D.G., and Nieto, M.A. (1993). Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361-373.   DOI
30 Atwood, C.S., Meethal, S.V., Liu, T., Wilson, A.C., Gallego, M., Smith, M.A., and Bowen, R.L. (2005). Dysregulation of the hypothalamic-pituitary-gonadal axis with menopause and andropause promotes neurodegenerative senescence. J. Neuropathol. Exp. Neurol. 64, 93-103.   DOI
31 Brideau, C.M., Eilertson, K.E., Hagarman, J.A., Bustamante, C.D., and Soloway, P.D. (2010). Successful computational prediction of novel imprinted genes from epigenomic features. Mol. Cell. Biol. 30, 3357-3370.   DOI   ScienceOn
32 Busby, W.H., Quackenbush, G.E., Humm, J., Youngblood, W.W., and Kizer, J.S. (1987). An enzyme(s) that converts glutaminylpeptides into pyroglutamyl-peptides - presence in pituitary, brain, adrenal-medulla, and lymphocytes. J. Biol. Chem. 262, 8532-8536.
33 Da Silveira Mitteldorf, C.A., de Sousa-Canavez, J.M., Leite, K.R., Massumoto, C., and Camara-Lopes, L.H. (2011). FN1, GALE, MET, and QPCT overexpression in papillary thyroid carcinoma: molecular analysis using frozen tissue and routine fine-needle aspiration biopsy samples. Diagn Cytopathol. 39, 556-561.   DOI   ScienceOn
34 Carr, M.S., Yevtodiyenko, A., Schmidt, C.L., and Schmidt, J.V. (2007). Allele-specific histone modifications regulate expression of the Dlk1-Gtl2 imprinted domain. Genomics 89, 280-290.   DOI   ScienceOn
35 Charalambous, M., Cowley, M., Geoghegan, F., Smith, F.M., Radford, E.J., Marlow, B.P., Graham, C.F., Hurst, L.D., and Ward, A. (2010). Maternally-inherited Grb10 reduces placental size and efficiency. Dev. Biol. 337, 1-8.   DOI   ScienceOn
36 Coan, P.M., Burton, G.J., and Ferguson-Smith, A.C. (2005). Imprinted genes in the placenta--a review. Placenta 26 Suppl A, S10-20.   DOI   ScienceOn
37 Doherty, A.S., Mann, M.R.W., Tremblay, K.D., Bartolomei, M.S., and Schultz, R.M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526-1535.   DOI   ScienceOn
38 Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463.   DOI   ScienceOn
39 Fischer, W.H., and Spiess, J. (1987). Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc. Natl. Acad. Sci. USA 84, 3628-3632.   DOI   ScienceOn
40 Gillis, J.S. (2006). Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy. J. Transl. Med. 4, 27.   DOI   ScienceOn