Browse > Article

Hyperoside Protects Cells against Gamma Ray Radiation-Induced Apoptosis in Hamster Lung Fibroblast  

Piao, Mei Jing (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Kim, Ki Cheon (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Cho, Suk Ju (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Chae, Sungwook (Aging Research Center, Korea Institute of Oriental Medicine)
Kang, Sam Sik (Natural Products Research Institute and College of Pharmacy, Seoul National University)
Hyun, Jin Won (School of Medicine and Institute for Nuclear Science and Technology, Jeju National University)
Publication Information
Natural Product Sciences / v.19, no.2, 2013 , pp. 127-136 More about this Journal
Abstract
Ionizing radiation, including that evoked by gamma (${\gamma}$)-rays, induces oxidative stress through the generation of reactive oxygen species, resulting in apoptosis, or programmed cell death. This study aimed to elucidate the radioprotective effects of hyperoside (quercetin-3-O-galactoside) against ${\gamma}$-ray radiation-induced apoptosis in Chinese hamster lung fibroblasts, V79-4 and demonstrated that the compound reduced levels of intracellular reactive oxygen species in ${\gamma}$-ray-irradiated cells. Hyperoside also protected irradiated cells against DNA damage (evidenced by pronounced DNA tails and elevated phospho-histone H2AX and 8-oxoguanine content) and membrane lipid peroxidation. Furthermore, hyperoside prevented the ${\gamma}$-ray-provoked reduction in cell viability via the inhibition of apoptosis through the increased levels of Bcl-2, the decreased levels of Bax and cytosolic cytochrome c, and the decrease of the active caspase 9 and caspase 3 expression. Taken together, these results suggest that hyperoside defend cells against ${\gamma}$-ray radiation-induced apoptosis by inhibiting oxidative stress.
Keywords
Hyperoside (quercetin-3-O-galactoside); ${\gamma}$-Ray radiation; Apoptosis; Reactive oxygen species; Oxidative stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Afaq, F. and Mukhtar, H., Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp. Dermatol. 15, 678-684 (2006).   DOI   ScienceOn
2 Bhosle, S.M., Huilgol, N.G., and Mishra, K.P., Enhancement of radiationinduced oxidative stress and cytotoxicity in tumor cells by ellagic acid. Clin. Chim. Acta 359, 89-100 (2005).   DOI   ScienceOn
3 Bouhlel, I., Valenti, K., Kilani, S., Skandrani, I., Ben Sghaier, M., Mariotte, A.M., Dijoux-Franca, M.G., Ghedira, K., Hininger-Favier, I., Laporte, F., and Chekir-Ghedira, L., Antimutagenic, antigenotoxic and antioxidant activities of Acacia salicina extracts (ASE) and modulation of cell gene expression by $H_{2}O_{2}$ and ASE treatment. Toxicol. In Vitro 22, 1264-1272 (2008).   DOI   ScienceOn
4 Bonner, W.M., Redon, C.E., Dickey, J.S., Nakamura, A.J., Sedelnikova, O.A., Solier, S., and Pommier, Y., Gamma H2AX and cancer. Nat. Rev. Cancer 8, 957-967 (2008).   DOI   ScienceOn
5 Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D., and Mitchell, J.B., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-941 (1987).
6 Chen, L., Li, J., Luo, C., Liu, H., Xu, W., Chen, G., Liew, O. W., Zhu, W., Puah, C. M., Shen, X., and Jiang, H., Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem. 14, 8295-8306 (2006).   DOI   ScienceOn
7 Choi, K.M., Kang, C.M., Cho, E.S., Kang, S.M., Lee, S.B., and Um, H.D., Ionizing radiationinduced micronucleus formation is mediated by reactive oxygen species that are produced in a manner dependent on mitochondria, Nox1, and JNK. Oncol. Rep. 17, 1183-1188 (2007).
8 Dizdaroglu, M., Jaruga, P., Birincioglu, M., and Rodriguez, H., Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32, 1102-1115 (2002).   DOI   ScienceOn
9 Ferguson, L.R., Role of plant polyphenols in genomic stability. Mutat. Res. 475, 89-111 (2001).   DOI   ScienceOn
10 Gao, K., Henning, S.M., Niu, Y., Youssefian, A.A., Seeram, N.P., Xu, A., and Heber, D., The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem. 17, 89-95 (2006).   DOI   ScienceOn
11 Guarrera, S., Sacerdote, C., Fiorini, L., Marsala, R., Polidoro, S., Gamberini, S., Saletta, F., Malaveille, C., Talaska, G., Vineis, P., and Matullo, G., Expression of DNA repair and metabolic genes in response to a flavonoid-rich diet. Br. J. Nutr. 98, 525-533 (2007).   DOI   ScienceOn
12 Jagetia, A., Jagetia, G.C., and Jha, S., Naringin, a grapefruit flavanone, protects V79 cells against the bleomycin-induced genotoxicity and decline in survival. J. Appl. Toxicol. 27, 122-132 (2007).   DOI   ScienceOn
13 Kim, S.Y., Seo, M., Oh, J.M., Cho, E.A., and Juhnn, Y.S., Inhibition of gamma ray-induced apoptosis by stimulatory heterotrimeric GTP binding protein involves Bcl-xL downregulation in SH-SY5Y human neuroblastoma cells. Exp. Mol. Med. 39, 583-593 (2007).   DOI   ScienceOn
14 Landes, T., and Martinou, J.C., Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Biochim. Biophys. Acta 1813, 540-545 (2011).   DOI   ScienceOn
15 Lee, J.H., Kim, S.Y., Kil, I.S., and Park, J.W., Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem. 282, 13385-13394 (2007).   DOI   ScienceOn
16 Lee, S.Y., Kim, J.S., and Kang, S.S., Flavonol glycosides from the aerial parts of Metaplexis japonica. Kor. J. Pharmacogn. 43, 206-212 (2012).
17 Li, S., Zhang, Z., Cain, A., Wang, B., Long, M., and Taylor, J., Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J. Agric. Food Chem. 53, 32-37 (2005).   DOI   ScienceOn
18 Lin, X., Zhang, F., Bradbury, C.M., Kaushal, A., Li, L., Spitz, D.R., Aft, R.L., and Gius, D., 2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res. 63, 3413-3417 (2003).
19 Liu, Y. and Luo, W., Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Mol. Cells 33, 517-524 (2012).   DOI
20 Liu, Z., Tao, X., Zhang, C., Lu, Y., and Wei, D., Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide. Biomed. Pharmacother. 59, 481-490 (2005).   DOI   ScienceOn
21 Luo, L., Sun, Q., Mao, Y.Y., Lu, Y.H., and Tan, R.X., Inhibitory effects of flavonoids from Hypericum perforatum on nitric oxide synthase. J. Ethnopharmacol. 93, 221-225 (2004).   DOI   ScienceOn
22 Middleton, E.Jr., Kandaswami, C., and Theoharides, T.C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673-751 (2000).
23 Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., and Riccardi, C., A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271-279 (1991).   DOI   ScienceOn
24 Nijveldt, R.J., van Nood, E., van Hoorn, D.E., Boelens, P.G., van Norren, K., and van Leeuwen, P.A., Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74, 418-425 (2001).
25 Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T., and Noguchi, N., A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474, 137-140 (2000).   DOI   ScienceOn
26 Perkins, C.L., Fang, G., Kim, C.N., and Bhalla, K.N., The role of Apaf-1, caspase-9, and bid proteins in etoposide- or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res. 60, 1645-1653 (2000).
27 Piao, M.J., Kang, K.A., Zhang, R., Ko, D.O., Wang, Z.H., You, H.J., Kim, H.S., Kim, J.S., Kang, S.S., and Hyun, J.W., Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim. Biophys. Acta 1780, 1448-1457 (2008).   DOI   ScienceOn
28 Prenner, L., Sieben, A., Zeller, K., Weiser, D., and Haberlein, H., Reduction of High-Affinity beta(2)-Adrenergic Receptor Binding by Hyperforin and Hyperoside on Rat C6 Glioblastoma Cells Measured by Fluorescence Correlation Spectroscopy. Biochemistry 46, 5106-5113 (2007).   DOI   ScienceOn
29 Renault, T.T., Teijido, O., Antonsson, B., Dejean, L.M., and Manon, S., Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-x(L): keep your friends close but your enemies closer. Int. J. Biochem. Cell Biol. 45, 64-67 (2013).   DOI   ScienceOn
30 Rajagopalan, R., Ranjan, S.K., and Nair, C.K., Effect of vinblastine sulfate on gammaradiation-induced DNA single-strand breaks in murine tissues. Mutat. Res. 536, 15-25 (2003).   DOI   ScienceOn
31 Rosenkranz, A.R., Schmaldienst, S., Stuhlmeier, K.M., Chen,W., Knapp,W., and Zlabinger, G.J., A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescein-diacetate. J. Immunol. Methods 156, 39-45 (1992).   DOI   ScienceOn
32 Sies, H., Oxidative Stress, Academic Press, New York, 1983.
33 Troiano, L., Ferraresi, R., Lugli, E., Nemes, E., Roat, E., Nasi,M., Pinti, M., and Cossarizza, A., Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat. Protoc. 2, 2719-2727 (2007).   DOI   ScienceOn
34 Trumbeckaite, S., Bernatoniene, J., Majiene, D., Jakstas, V., Savickas, A., and Toleikis, A., The effect of flavonoids on rat heart mitochondrial function. Biomed. Pharmacother. 60, 245-248 (2006).
35 Tuder, R.M., Zhen, L., and Cho, C.Y., Taraseviciene-Stewart, L., Kasahara, Y., Salvemini, D., Voelkel, N.F., and Flores, S.C., Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell. Mol. Biol. 29, 88-97 (2003).   DOI   ScienceOn
36 Wu, L.L., Yang, X.B., Huang, Z.M., Liu, H.Z., and Wu, G.X., In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta. Pharmacol. Sin. 28, 404-409 (2007).   DOI   ScienceOn
37 Yang, P., He, X.Q., Peng, L., Li, A.P., Wang, X.R., Zhou, J.W., and Liu, Q.Z., The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast (HELF) cellular proliferation model. J. Toxicol. Environ. Health A 70, 976-983 (2007).   DOI   ScienceOn
38 Zou, Y., Lu, Y., and Wei, D., Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem. 52, 5032-5039 (2004).   DOI   ScienceOn
39 Yen, G.C., Duh, P.D., Tsai, H.L., and Huang, S.L., Pro-oxidative properties of flavonoids in human lymphocytes. Bioscience, Biotech. Biochem. 67, 1215-1222 (2003).   DOI   ScienceOn
40 Zhang, J., Stanley, R.A., Adaim, A., Melton, L.D., and Skinner, M.A., Free radical scavenging and cytoprotective activities of phenolic antioxidants. Mol. Nutr. Food Res. 50, 996-1005 (2006).   DOI   ScienceOn
41 Tope, A.M. and Panemangalore, M., Assessment of oxidative stress due to exposure to pesticides in plasma and urine of traditional limitedresource farm workers: formation of the DNA-adduct 8-hydroxy-2-deoxy-guanosine (8-OHdG). J. Environ. Sci. Health B 42, 151-155 (2007).   DOI   ScienceOn