• 제목/요약/키워드: histogram segmentation

검색결과 205건 처리시간 0.033초

은닉표적의 분할을 위한 실시간 Graphic User Interface 구현에 관한 연구 (A study on Real-time Graphic User Interface for Hidden Target Segmentation)

  • 염석원
    • 융합신호처리학회논문지
    • /
    • 제17권2호
    • /
    • pp.67-70
    • /
    • 2016
  • 본 논문에서 8mm 파장영역에서 획득한 수동형 밀리미터파 영상을 이용하여 위험물체를 은닉한 대상으로부터 금속표적(권총)을 자동으로 분할하고 식별하는 실시간 그래픽 사용자 인터페이스(Graphic User Interface)를 구현한다. 은닉된 표적의 분할 방법은 다단계 영상 분할 방법을 이용한다. 다단계 영상 분할의 각 단계는 밀리미터파 영상의 히스토그램을 가우시안 혼합 모델(Gaussian Mixture Model)로 가정하고 LBG 양자화(Vector-Quantization)과 추정(Expectation)-최대화(Maximization) 알고리즘으로 구성된다. 첫 번째 단계에서 배경으로부터 몸체 영역을 분할하고 두 번째 단계에서 몸체로부터 은닉된 물체 영역을 순차적으로 분할한다. 실험 및 시뮬레이션에서는 그래픽 사용자 인터페이스 프로그램을 이용하여 분석된 결과를 보여준다.

딥러닝 기법을 이용한 망막 혈관 분할 (Retinal Blood Vessel Segmentation using Deep Learning)

  • 김범상;이익현
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.77-82
    • /
    • 2019
  • 당뇨망막증은 망막의 말초혈관에 순환장애가 일어나 발생하는 당뇨병의 합병증으로, 이를 진단하기 위하여 미세혈관류를 분할하였다. 기존 필터와 특징을 사용한 혈관분할은 두꺼운 혈관은 비교적 잘 분할을 하나, 미세한 혈관에 대해서는 정확도가 떨어진다는 단점이 있다. 그리하여 전처리로 노이즈 제거를 위한 필터, 영상 대비를 위한 히스토그램 평활화를 사용하였으며, 픽셀 단위 분할을 위해 딥러닝 기법을 이용하였다. 기존 방법의 정확도는 90% ~ 94%이며, 제안한 방법의 정확도는 95%이다. 결과 영상에서 시신경 유두 및 삼출몰 주변에서 분할 오류가 나타나는 문제점이 있으나, 이는 네트워크 깊이가 얕음에 의한 오류로 향후 네트워크 변경을 통해 정확도를 개선할 수 있다.

부분 히스토그램 문턱치 알고리즘을 사용한 조영증강 CT영상의 자동 간 분할 (Automatic Liver Segmentation of a Contrast Enhanced CT Image Using a Partial Histogram Threshold Algorithm)

  • Kyung-Sik Seo;Seung-Jin Park;Jong An Park
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.189-194
    • /
    • 2004
  • 조영 증강된 CT 영상의 화소값은 조영제에 의해 이산적으로 변한다. 또한 간의 중간부분에서는 간과 유사한 농도값을 갖는 췌장 때문에 간의 분할이 어렵다. 본 논문에서는 조영증강된 CT영상의 화소값의 이산적인 변화와 간과 겹치는 췌장을 제거하기 위하여 부분 히스토램 문턱치 알고리즘을 사용한 간 분할법을 제안한다. 히스토그램 변환 후 간 구조의 농도 값의 범위를 찾기 위한 적응 다봉성 분할과 췌장 제거를 위한 부분 히스토그램 문턱치 알고리즘을 수행한다. 다음으로, 간 이외의 불필요한 대상을 제거하고 경계를 매끈하게 하기 위해 모폴러지 필터링을 수행한다. 제안된 방법을 평가하기 위해 8명의 환자로부터 획득된 CT 영상중 중간부분에서 4개씩 총 32단면을 선택하였다. 부분 히스토그램 문턱치 알고리즘을 사용한 자동 분할법 II와 수동 분할법의 정규화된 평균 면적의 평균은 0.1671과 0.1711이었으며, 이 두 방법은 아주 적은 차이를 보인다. 또, 자동 분할법 II와 수동 분할법의 평균 면적 오차율은 6.8339 % 이다. 이 실험 결과로부터 제안된 자동 간분할 법은 의사에 의해 시행된 수동 분할법과 매우 유사한 수행능력을 갖는다.

Comparison of Pre-processed Brain Tumor MR Images Using Deep Learning Detection Algorithms

  • Kwon, Hee Jae;Lee, Gi Pyo;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.79-84
    • /
    • 2021
  • Detecting brain tumors of different sizes is a challenging task. This study aimed to identify brain tumors using detection algorithms. Most studies in this area use segmentation; however, we utilized detection owing to its advantages. Data were obtained from 64 patients and 11,200 MR images. The deep learning model used was RetinaNet, which is based on ResNet152. The model learned three different types of pre-processing images: normal, general histogram equalization, and contrast-limited adaptive histogram equalization (CLAHE). The three types of images were compared to determine the pre-processing technique that exhibits the best performance in the deep learning algorithms. During pre-processing, we converted the MR images from DICOM to JPG format. Additionally, we regulated the window level and width. The model compared the pre-processed images to determine which images showed adequate performance; CLAHE showed the best performance, with a sensitivity of 81.79%. The RetinaNet model for detecting brain tumors through deep learning algorithms demonstrated satisfactory performance in finding lesions. In future, we plan to develop a new model for improving the detection performance using well-processed data. This study lays the groundwork for future detection technologies that can help doctors find lesions more easily in clinical tasks.

비디오 브라우징 서비스 (Video Browsing Service)

  • 신성윤;신광성;이현창;진찬용;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.139-140
    • /
    • 2012
  • This paper proposes a Video Browsing Service that provides both the video content retrieval and the video browsing by the real-time user interface on Web. For the scene segmentation and key frame extraction of video sequence, we proposes an efficient scene change detection method that combine the RGB color histogram with the ${\chi}2$ histogram.

  • PDF

히스토그램을 이용한 효율적인 차선검출 (Efficient Lane Detection Using Histogram Based Segmentation)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1062-1067
    • /
    • 2003
  • 본 논문에서는 히스토그램에 기반한 영상분할과 결정트리구조를 이용하여 효율적으로 도로의 차선을 검출하는 알고리즘을 제안하였다. 제안한 시스템은 먼저 차선을 감지하기 위한 방법으로 그레이 레벨을 이용한 히스토그램의 특성을 사용하였고, 감지된 차선은 결정트리에 의해 보다 명확히 분류되어, 도로와 차선과의 관계를 분석할 수 있었다. 또한 시스템은 약 30Hz의 실시간 속도로 작동하면서 차선감지는 물론, 차선의 추적이나 장애물 감지의 효과도 얻을 수 있었다.

밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법 (Contrast Enhancement Using a Density based Sub-histogram Equalization Technique)

  • 윤현섭;한영준;한헌수
    • 전자공학회논문지SC
    • /
    • 제46권1호
    • /
    • pp.10-21
    • /
    • 2009
  • 영상에서 밝기의 분포가 밀집된 영역에 포함되는 특징은 구분이 어렵다. 이러한 문제의 해결을 위해 전역 혹은 지역 명암대비 향상기법을 사용하게 되며 주로 히스토그램의 평활화 기법이 적용된다. 기존의 전역 명암대비 향상기법을 적용하는 경우 밝기 밀집 정도를 고려하지 않아서 지나치게 밝거나 너무 어두운 값으로 변환하는 문제를 만들고, 지역 명암대비 향상기법은 결과 영상에서 특징을 분리해버리거나 밝기분포의 불규칙성으로 인해 부자연스러운 영상을 만들어내는 결과를 보여주기도 한다. 본 논문은 이러한 문제를 해결하기 위해 히스토그램을 밀집정도를 기준으로 분할하고, 각 분할된 히스토그램의 평활화 범위를 분할영역의 평균과 분산을 고려하여 결정하는 방법을 제안한다. 제안하는 방법은 평활화를 밀집영역의 밝기범위와 밀집정도를 고려하여 평활화하는 최고 및 최저 밝기를 결정함으로써 지나친 밝기의 변화를 최소화하고, 밀도가 낮은 나머지 영역들에 대해 분리된 평활화를 수행함에 따라 이들 영역의 특징들이 사라지지 않고 향상시키는 효과를 거둘 수 있다. 히스토그램의 분할 및 평활화 범위를 결정하는 방법도 본 논문에서 제시되었다. 제안된 방법의 성능의 우수성은 다양한 밝기 영역을 갖는 실험영상들을 대상으로 기존의 방법들과 비교실험을 통해 입증하였다.

Video Segmentation and Key frame Extraction using Multi-resolution Analysis and Statistical Characteristic

  • Cho, Wan-Hyun;Park, Soon-Young;Park, Jong-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.457-469
    • /
    • 2003
  • In this paper, we have proposed the efficient algorithm that can segment the video scene change using a various statistical characteristics obtained from by applying the wavelet transformation for each frames. Our method firstly extracts the histogram features from low frequency subband of wavelet-transformed image and then uses these features to detect the abrupt scene change. Second, it extracts the edge information from applying the mesh method to the high frequency subband of transformed image. We quantify the extracted edge information as the values of variance characteristic of each pixel and use these values to detect the gradual scene change. And we have also proposed an algorithm how extract the proper key frame from segmented video scene. Experiment results show that the proposed method is both very efficient algorithm in segmenting video frames and also is to become the appropriate key frame extraction method.

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • 한국측량학회지
    • /
    • 제27권1호
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

Face Detection by Eye Detection with Progressive Thresholding

  • Jung, Ji-Moon;Kim, Tae-Chul;Wie, Eun-Young;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1689-1694
    • /
    • 2005
  • Face detection plays an important role in face recognition, video surveillance, and human computer interface. In this paper, we present a face detection system using eye detection with progressive thresholding from a digital camera. The face candidate is detected by using skin color segmentation in the YCbCr color space. The face candidates are verified by detecting the eyes that is located by iterative thresholding and correlation coefficients. Preprocessing includes histogram equalization, log transformation, and gray-scale morphology for the emphasized eyes image. The distance of the eye candidate points generated by the progressive increasing threshold value is employed to extract the facial region. The process of the face detection is repeated by using the increasing threshold value. Experimental results show that more enhanced face detection in real time.

  • PDF