References
- V. Gulshan, L. Peng, M. Coram, M.. Stumpe, D. Wu, A. Narayanaswamy, S. S. Venugopalan, K. Widner, T. Madams, and J. Cuadros, "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs", JAMA, Vol. 316, No. 22, pp. 2402-2410, Dec. 2016. https://doi.org/10.1001/jama.2016.17216
- R. Gargeya and T. Leng, "Automated identification of diabetic retinopathy using deep learning", Ophthalmology, Vol. 124, No. 7, pp. 962-969, Jul. 2017. https://doi.org/10.1016/j.ophtha.2017.02.008
- C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images", In Proceedings of the IEEE International Conference on Computer Vision, Bombay, India, India, pp. 839-846, Jan. 1998.
- J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440, 2015.
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation", International Conference on Medical image computing and computer-assisted intervention, pp. 234-241, May 2015.
- S. Ioffe and C. Szegedy, "Batch normalization : Accelerating deep network training by reducing internal covariate shift", Proceedings of the ICML, pp. 448-456, Mar. 2015.
- L, Bottou, "Large-scale machine learning with stochastic gradient descent", Proceedings of COMPSTAT, pp. 177-186, 2010.
- N. Otsu, "A threshold selection method from gray-level histograms", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No, 1, pp. 62-66, Jan. 1979. https://doi.org/10.1109/TSMC.1979.4310076
- J. Staal, M. Abr'amoff, M. Niemeijer, M. Viergever, B. van Ginneken, "Ridge based vessel segmentation in color images of the retina", IEEE Transactions on Medical Imaging, Vol. 23, No. 4, pp. 501-509, Apr. 2004. https://doi.org/10.1109/TMI.2004.825627
- A. Hoover, V. Kouznetsova, and M. Goldbaum, "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response", IEEE Transactions on Medical Imaging, Vol. 19, No. 3, pp. 203-210, Mar. 2000. https://doi.org/10.1109/42.845178
- D. Maji, A. Santara, S. Ghosh, D. Sheet, and P. Mitra, "Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images", 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3029-3032, Aug. 2015.
- D. Maji, A. Santara, P. Mitra, and D. Sheet, "Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images", arXiv preprint arXiv:1603.04833, 2016.
- M. Li, Q. Yin, and M. Lu, "Retinal Blood Vessel Segmentation Based on Multi-Scale Deep Learning", 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1-7, Sep. 2018.
Cited by
- Classification of ROP Using Deep Learning vol.17, pp.10, 2019, https://doi.org/10.14801/jkiit.2019.17.10.17
- 딥 러닝 기반 실시간 센서 고장 검출 기법 vol.20, pp.1, 2019, https://doi.org/10.7236/jiibc.2020.20.1.163
- 정칙화 항에 기반한 WGAN의 립쉬츠 연속 안정화 기법 제안 vol.20, pp.1, 2019, https://doi.org/10.7236/jiibc.2020.20.1.239