DOI QR코드

DOI QR Code

Retinal Blood Vessel Segmentation using Deep Learning

딥러닝 기법을 이용한 망막 혈관 분할

  • 김범상 (탑 엔지니어링) ;
  • 이익현 (한국산업기술대학교 메카트로닉스공학과)
  • Received : 2019.01.15
  • Accepted : 2019.05.24
  • Published : 2019.05.31

Abstract

Diabetic retinopathy is a complicated form of diabetes due to circulatory disorder in the peripheral blood vessels of the retina. We segment the microvessel for diagnosing diabetic retinophathy. The conventional methods using filter and features can segment the thick blood vessels, but it has relatively weak for segmenting fine blood vessels. In pre-processing step, noise reduction filter and histogram equalization are applied to suppress the noise and enhance the image contrast. Then, deep learning technique is used for pixel-by-pixel segmentation. The accuracy of conventional methods is between 90% to 94%, while the proposed method has improved as 95% accuracy. There is a problem of segmentation error around the optic disc and exudate due to the network depth. However the accuracy can be improved by modifying the network architecture in the future.

당뇨망막증은 망막의 말초혈관에 순환장애가 일어나 발생하는 당뇨병의 합병증으로, 이를 진단하기 위하여 미세혈관류를 분할하였다. 기존 필터와 특징을 사용한 혈관분할은 두꺼운 혈관은 비교적 잘 분할을 하나, 미세한 혈관에 대해서는 정확도가 떨어진다는 단점이 있다. 그리하여 전처리로 노이즈 제거를 위한 필터, 영상 대비를 위한 히스토그램 평활화를 사용하였으며, 픽셀 단위 분할을 위해 딥러닝 기법을 이용하였다. 기존 방법의 정확도는 90% ~ 94%이며, 제안한 방법의 정확도는 95%이다. 결과 영상에서 시신경 유두 및 삼출몰 주변에서 분할 오류가 나타나는 문제점이 있으나, 이는 네트워크 깊이가 얕음에 의한 오류로 향후 네트워크 변경을 통해 정확도를 개선할 수 있다.

Keywords

References

  1. V. Gulshan, L. Peng, M. Coram, M.. Stumpe, D. Wu, A. Narayanaswamy, S. S. Venugopalan, K. Widner, T. Madams, and J. Cuadros, "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs", JAMA, Vol. 316, No. 22, pp. 2402-2410, Dec. 2016. https://doi.org/10.1001/jama.2016.17216
  2. R. Gargeya and T. Leng, "Automated identification of diabetic retinopathy using deep learning", Ophthalmology, Vol. 124, No. 7, pp. 962-969, Jul. 2017. https://doi.org/10.1016/j.ophtha.2017.02.008
  3. C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images", In Proceedings of the IEEE International Conference on Computer Vision, Bombay, India, India, pp. 839-846, Jan. 1998.
  4. J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440, 2015.
  5. O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation", International Conference on Medical image computing and computer-assisted intervention, pp. 234-241, May 2015.
  6. S. Ioffe and C. Szegedy, "Batch normalization : Accelerating deep network training by reducing internal covariate shift", Proceedings of the ICML, pp. 448-456, Mar. 2015.
  7. L, Bottou, "Large-scale machine learning with stochastic gradient descent", Proceedings of COMPSTAT, pp. 177-186, 2010.
  8. N. Otsu, "A threshold selection method from gray-level histograms", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No, 1, pp. 62-66, Jan. 1979. https://doi.org/10.1109/TSMC.1979.4310076
  9. J. Staal, M. Abr'amoff, M. Niemeijer, M. Viergever, B. van Ginneken, "Ridge based vessel segmentation in color images of the retina", IEEE Transactions on Medical Imaging, Vol. 23, No. 4, pp. 501-509, Apr. 2004. https://doi.org/10.1109/TMI.2004.825627
  10. A. Hoover, V. Kouznetsova, and M. Goldbaum, "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response", IEEE Transactions on Medical Imaging, Vol. 19, No. 3, pp. 203-210, Mar. 2000. https://doi.org/10.1109/42.845178
  11. D. Maji, A. Santara, S. Ghosh, D. Sheet, and P. Mitra, "Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images", 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3029-3032, Aug. 2015.
  12. D. Maji, A. Santara, P. Mitra, and D. Sheet, "Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images", arXiv preprint arXiv:1603.04833, 2016.
  13. M. Li, Q. Yin, and M. Lu, "Retinal Blood Vessel Segmentation Based on Multi-Scale Deep Learning", 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1-7, Sep. 2018.

Cited by

  1. Classification of ROP Using Deep Learning vol.17, pp.10, 2019, https://doi.org/10.14801/jkiit.2019.17.10.17
  2. 딥 러닝 기반 실시간 센서 고장 검출 기법 vol.20, pp.1, 2019, https://doi.org/10.7236/jiibc.2020.20.1.163
  3. 정칙화 항에 기반한 WGAN의 립쉬츠 연속 안정화 기법 제안 vol.20, pp.1, 2019, https://doi.org/10.7236/jiibc.2020.20.1.239