Contrast Enhancement Using a Density based Sub-histogram Equalization Technique

밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법

  • Yoon, Hyun-Sup (Department of Electrical Engineering, Soongsil University) ;
  • Han, Young-Joon (Department of Electrical Engineering, Soongsil University) ;
  • Hahn, Hern-Soo (Department of Electrical Engineering, Soongsil University)
  • Published : 2009.01.25

Abstract

In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes those regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrast in the images and the results are compared to the conventional approaches to show its superiority.

영상에서 밝기의 분포가 밀집된 영역에 포함되는 특징은 구분이 어렵다. 이러한 문제의 해결을 위해 전역 혹은 지역 명암대비 향상기법을 사용하게 되며 주로 히스토그램의 평활화 기법이 적용된다. 기존의 전역 명암대비 향상기법을 적용하는 경우 밝기 밀집 정도를 고려하지 않아서 지나치게 밝거나 너무 어두운 값으로 변환하는 문제를 만들고, 지역 명암대비 향상기법은 결과 영상에서 특징을 분리해버리거나 밝기분포의 불규칙성으로 인해 부자연스러운 영상을 만들어내는 결과를 보여주기도 한다. 본 논문은 이러한 문제를 해결하기 위해 히스토그램을 밀집정도를 기준으로 분할하고, 각 분할된 히스토그램의 평활화 범위를 분할영역의 평균과 분산을 고려하여 결정하는 방법을 제안한다. 제안하는 방법은 평활화를 밀집영역의 밝기범위와 밀집정도를 고려하여 평활화하는 최고 및 최저 밝기를 결정함으로써 지나친 밝기의 변화를 최소화하고, 밀도가 낮은 나머지 영역들에 대해 분리된 평활화를 수행함에 따라 이들 영역의 특징들이 사라지지 않고 향상시키는 효과를 거둘 수 있다. 히스토그램의 분할 및 평활화 범위를 결정하는 방법도 본 논문에서 제시되었다. 제안된 방법의 성능의 우수성은 다양한 밝기 영역을 갖는 실험영상들을 대상으로 기존의 방법들과 비교실험을 통해 입증하였다.

Keywords

References

  1. A. K. Jai, Fundamentals of Digital Image Processing, Prentice-Hall, 1989
  2. J. Y. Kim, L. S. Kim, S. H. Hwang, 'An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization,' IEEE Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 4, pp.475-484, April 2001 https://doi.org/10.1109/76.915354
  3. C. C. Sun. S. J. Ruan, M. C. Shie, T. W. Pai, 'Dynamic Contrast Enhancement based on Histogram Specification,' IEEE Transactions on Consumer Electronics, Vol. 51, No. 4, pp.1300-1305, November 2005 https://doi.org/10.1109/TCE.2005.1561859
  4. J. A. Stark, 'Adaptive Image Contrast Enhancement Using Generalizations of Histogram Equalization,' IEEE Transactions on Image Processing, Vol. 9, No. 5, pp.889-896, May 2000 https://doi.org/10.1109/83.841534
  5. Y. T. Kim, 'Contrast Enhancement Using Brightness Preserving Bi-Histogram Equalization,' IEEE Transactions on Consumer Electronics, Vol. 43, Issue 1, pp.1-8, Febrary 1997 https://doi.org/10.1109/30.580378
  6. Y. Wan, Q. Chen, B.-M. Zhang, 'Image enhancement based on equal area dualistic sub-image histogram equalization method', IEEE Trans. Consum. Electron. 45 (1) (1999) 68-75 https://doi.org/10.1109/30.754419
  7. S. D. Chen. A. Rahman Ramli, 'Contrast Enhancement using Recursive Mean-Separate Histogram Equalization for Scalable Brightness Preservation,' IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp.1301-1309, November 2003 https://doi.org/10.1109/TCE.2003.1261233
  8. S. D. Chen, A. Rahman Ramli, 'Minimum Mean Brightness Error Bi-Histogram Equalization in Contrast Enhancement,' IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp.1310-1319, November 2003 https://doi.org/10.1109/TCE.2003.1261234
  9. Soong-Der Chen, Abd. Rahman Ramli, 'Preserving brightness in histogram equalization based contrast enhancement techniques,'Digital Signal Processing, Vol. 12, Issue 5, pp.413-428, September 2004 https://doi.org/10.1016/j.dsp.2004.04.001
  10. Chao Wang and Zhongfu Ye, 'Brightness Preserving Histogram Equalization with Maximum Entropy: A Variational Perspective,'IEEE Transactions on Consumer Electronics, Vol. 51, No. 4, pp.1326-1334, Nov 2005 https://doi.org/10.1109/TCE.2005.1561863
  11. K. S. Sim, C. P. Tso, and Y. Y. Tan, 'Recursive sub-image histogram equalization applied to gray scale images', Pattern Recognition Letters, vol. 28, no. 10, pp. 1209-1221, 2007 https://doi.org/10.1016/j.patrec.2007.02.003
  12. Z. Chen, B. R. Abidi. D. L. Page, M. A. Abidi, 'Gray-Level Grouping(GLG) : An Automatic Method for Optimized Image Contrast Enhancement-Part I : The Basic Method,' IEEE Transactions on Image Processing, Vol. 15, No. 8, pp.2290-2302, August 2006 https://doi.org/10.1109/TIP.2006.875204
  13. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. H. Romeny, J. B. Zimmerman, K. Zuiderveld, 'Adaptive Histogram Equalization and Its Variations,' Computer Vision Graphics and Image Processing, Vol. 39, pp.355–368, 1987 https://doi.org/10.1016/S0734-189X(87)80186-X
  14. F. Lamberti, B. Montrucchio, A. Sanna, 'CMBFHE_a novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization,' IEEE Transactions on Consumer Electronics, Vol. 52, No. 3, pp.966-974, August 2006 https://doi.org/10.1109/TCE.2006.1706495
  15. Z. Q. Wu, J. A. Ware, I. D. Wilson, J. Zhang, 'Mechanism analysis of highly overlapped interpolation contrast enhancement,' IEEE Proceedings Vision, Image & Signal Processing, Vol. 153, No. 4, pp.512-520, August 2006 https://doi.org/10.1049/ip-vis:20050159