• Title/Summary/Keyword: hippocampal cells

Search Result 229, Processing Time 0.028 seconds

Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

  • Jeon, Seong Gak;Kim, Kyoung Ah;Chung, Hyunju;Choi, Junghyun;Song, Eun Ji;Han, Seung-Yun;Oh, Myung Sook;Park, Jong Hwan;Kim, Jin-il;Moon, Minho
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.603-610
    • /
    • 2016
  • Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.

Neuroprotective Effect of the Acid Hydrolysis Fraction of the Roots of Polygala Tenuifolia (원지 산 가수분해 분획물의 뇌세포 보호 작용)

  • Lee, Dong-Sung;Choi, Hyun-Gyu;Li, Bin;Kim, Kyung-Su;Kim, Soon-Ai;Chon, Seung-Ki;Rho, Jung-Mi;Kim, Ki-Mo;Han, Jong-Hyun;Jeong, Gil-Saeng;Kim, Youn-Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.628-634
    • /
    • 2011
  • The roots of Polygala tenuifolia Willd. is a well-known traditional medicine used as expectorant, tonic, tranquilizer in Asia including China and Korea. And also have been used to treat amnesia, neurasthenia, palpitation, insomnia, and disorientation. Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as Parkinson's disease, Alzheimer's disease, epilepsy and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of these diseases. NNMBS269, acid hydrolysis EtOAc fraction of the P. tenuifolia showed dominant neuroprotective effects on glutamate-induced neurotoxicity in mouse hippocampal HT22 cells while general EtOAc fraction of the P. tenuifolia (NNMBS268) not shown. NNMBS269 induced the expression of HO-1 protein that has been proposed to play an important cellular defense role against oxidant injury. In addition increased HO activity. In mouse hippocampal HT22 cells, NNMBS269 makes the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2). In conclusion, acid hydrolysis EtOAc fraction the P. enuifolia. (NNMBS269) significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 translocation in mouse hippocampal HT22 cells.

Neuroprotective Effect of the Aerial Parts of Taraxacum officinale on Glutamate-induced Oxidative Injury in Mouse Hippocampal HT22 Cells (글루타메이트로 유도된 쥐 해마 HT22 세포의 산화적 손상에 대한 서양민들레 지상부의 뇌신경세포 보호활성)

  • Li, Bin;Lee, Dong-Sung;Choi, Hyun-Gyu;Kim, Kyung-Su;Ji, Hye-Young;Rho, Jung-Mi;Kim, Ki-Mo;Kim, Youn-Chul
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.314-318
    • /
    • 2011
  • Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as epilepsy and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of these diseases. In the present study, we investigated the neuroprotective effects of the standard extracts of Taraxacum officinale Weber, one of the original plants of Taraxaci Herba, on glutamate-induced oxidative injury in mouse hippocampal HT22 cells. The standard EtOH extract of the aerial parts of T. officinale (NNMBS270) showed significant cytoprotective effects on glutamate-induced neurotoxicity and induced the expression of heme oxygenase (HO)-1 in the mouse hippocampal HT22 cells, while the roots' extract (NNMBS271) did not show neuroprotective effect. These results suggest that the extract of the aerial parts of T. officinale could be an effective candidate for the treatment of ROS-related neurological diseases.

Cytoprotective Constituents of the Stem Barks of Fraxinus rhynchophylla on Mouse Hippocampal HT22 Cells and Their Antioxidative Activity (물푸레나무 수피의 생쥐 해마 유래 HT22 세포 보호와 항산화 활성 물질)

  • Jeong, Gil-Saeng;Yoon, Kwon-Ha;Kim, Hyun-Chul;Oh, Seung-Hwan;Kim, Myong-Jung;Kang, Dae-Gill;Lee, Ho-Sub;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.3 s.150
    • /
    • pp.287-290
    • /
    • 2007
  • Phytochemical investigation of the MeOH extract of the dried stem barks of Fraxinus rhynchophylla Hance (Oleaceae), as guided by cytoprotective activity against tert-butyl hydroperoxide (t-BHP)-induced cell injury in mouse hippocampal HT22 cells, furnished two coumarins, esculetin (1) and fraxetin (2). Compounds 1 and 2 had the significant cytoprotective effects on t-BHP-induced cellular oxidative injury in HT22 cells. Furthermore, compounds 1 and 2 showed potent DPPH radical scavenging effect, exhibiting $IC_{50}$ values of 14.68 and 9.64 ${\mu}M$, respectively.

Effects of Long-Term Alcohol Treatment Combined with Vitamins or Piracetam on the Ultrastructure of Rat Hippocampal and Cerebellar Neurons (알코올 장기투여시 비타민 또는 Piracetam의 병합투여가 백서 해마와 소뇌 신경세포의 미세형태학적 구조에 미치는 영향)

  • Sohn, Chang-Ho;Lee, Sang-Ik;Kwak, Jeong-Sik;Jeong, In-Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.7 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • This study was carried out to investigate the direct neurotoxicity of alcohol on CNS and the effects of piracetam or vitamins on ultrastructural changes of the rat cerebellar and hippocampal neurons during long-term alcohol treatment. To evaluate the results, quantitative analysis were done for light and electronic microscopic findings. On the light microscopy, red degeneration of pyramidal cells and Purkinje cells was found more apparently in the alcohol only treated group than in the control group. On the electron microscopy, increased lipofuscin pigments were found in cerebellum and hippocampus. In quantitative analysis, vitamins significantly reduced red degeneration in both hippocampus and cerebellum. However, piracetam significantly reduced red degeneration in cerebellum but not in hippocampus. Lipofuscin pigments in Purkinje cells and pyramidal cells were significantly reduced in the alcohol with piracetam treated group than the alcohol only treated group. However, vitamins had no significant reducing effect of lipofuscin pigments in Purkinje cells and pyramidal cells. According to the results, it is concluded that vitamins deficiency might cause red degeneration of pyramidal cell after long-term alcohol treatment, but increment of lipofuscin pigments in pyramidal and Purkinje cell may be caused by alcohol itself or its metabolite rather than vitamins deficiency. Piracetam seems to improve cognitive function impairment caused by alcohol consumption.

  • PDF

Calcium Influx is Responsible for Afterdepolarizations in Rat Hippocampal Dentate Granule Cells

  • Park, Won-Sun;Lee, Suk-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.143-147
    • /
    • 2002
  • Granule cells in dentate gyrus of hippocampus relay information from entorhinal cortex via perforant fiber to pyramidal cells in CA3 region. Their electrical activities are known to be closely associated with seizure activity as well as memory acquisition. Since action potential is a stereotypic phenomena which is based on all-or-none principle of $Na^+$ current, the neuronal firing pattern is mostly dependent on afterpotentials which follows the stereotypic $Na^+$ spike. Granule cells in dentate gyrus show afterdepolarization (ADP), while interneurons in dentate gyrus have afterhyperpolarizaton. In the present study, we investigated the ionic mechanism of afterdepolarization in hippocampal dentate granule cell. Action potential of dentate granule cells showed afterdepolarization, which was characterized by a sharp notch followed by a depolarizing hump starting at about $-49.04{\pm}1.69\;mV\;(n=43,\;mean{\pm}SD)$ and lasting $3{\sim}7$ ms. Increase of extracellular $Ca^{2+}$ from 2 mM to 10 mM significantly enhanced the ADP both in amplitude and in duration. A $K^+$ channel blocker, 4-aminopyridine (4-AP, 2 mM), enhanced the ADP and often induced burst firings. These effects of 10 mM $Ca^{2+}$ and 4-AP were additive. On the contrary, the ADP was significantly suppressed by removal of external $Ca^{2+},$ even in the presence of 4-AP (2 mM). A $Na^+$ channel blocker, TTX (100 nM), did not affect the ADP. From these results, it is concluded that the extracellular $Ca^{2+}$ influx contributes to the generation of ADP in granule cells.

Neuroprotective Effects of Plant Extracts from Baekdu Mountain on Glutamate-induced Cytotoxicity in HT22 cells (글루타메이트로 유발한 HT22세포 독성에 대한 백두산 식물 추출물의 보호 효과)

  • Li, Bin;Jeong, Gil-Saeng;An, Ren-Bo;Lee, Dong-Sung;Byun, Erisa;Yoon, Kwon-Ha;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.3
    • /
    • pp.213-217
    • /
    • 2008
  • Oxidative stress is considered to play an important role in a variety of neurodegenerative disorders of central nervous system. The immortalized mouse hippocampal cell line, HT22, phenotypically resembles neuronal precursor cells but lacks functional ionotropic glutamate receptors, thus excluding excitotoxicity as a cause for glutamate triggered cell death. Therefore, HT22 cells are a useful model for studying oxidative glutamate toxicity. In this study, we examined whether the methanol extracts of some native plants at Mt. Baekdu could protect HT22-immortalized hippocampal cells against glutamate-induced oxidative stress. Seventy-eight plants sources were collected at Mt. Baekdu, and extracted with methanol. These extracts had been screened the protective effects against glutamate-induced oxidative damage in HT22 cells at the 100 and 300 ${\mu}g/ml$. Of these, thirteen methanolic extracts, Acer mono (leaf), Artemisia stolonifera (aerial part), Carduus crispus (aerial part), Carex mongolica (whole plant), Clematis hexapetala (whole plant), Galeopsis bifida (aerial part), Galium verum (whole plant), Ganoderma lucidum (whole plant), Ixeris chinensis (whole plant), Malva verticillata (aerial part), Polygonum senticosum (whole plant), Rebes mandshricum (branch), and Taraxacum mongolicum (aerial part), showed significant protective effects against glutamate-induced oxidative damage in HT22 cells.

Integrative analysis of microRNA-mediated mitochondrial dysfunction in hippocampal neural progenitor cell death in relation with Alzheimer's disease

  • A Reum Han;Tae Kwon Moon;Im Kyeung Kang;Dae Bong Yu;Yechan Kim;Cheolhwan Byon;Sujeong Park;Hae Lin Kim;Kyoung Jin Lee;Heuiran Lee;Ha-Na Woo;Seong Who Kim
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.281-286
    • /
    • 2024
  • Adult hippocampal neurogenesis plays a pivotal role in maintaining cognitive brain function. However, this process diminishes with age, particularly in patients with neurodegenerative disorders. While small, non-coding microRNAs (miRNAs) are crucial for hippocampal neural stem (HCN) cell maintenance, their involvement in neurodegenerative disorders remains unclear. This study aimed to elucidate the mechanisms through which miRNAs regulate HCN cell death and their potential involvement in neurodegenerative disorders. We performed a comprehensive microarray-based analysis to investigate changes in miRNA expression in insulin-deprived HCN cells as an in vitro model for cognitive impairment. miR-150-3p, miR-323-5p, and miR-370-3p, which increased significantly over time following insulin withdrawal, induced pronounced mitochondrial fission and dysfunction, ultimately leading to HCN cell death. These miRNAs collectively targeted the mitochondrial fusion protein OPA1, with miR-150-3p also targeting MFN2. Data-driven analyses of the hippocampi and brains of human subjects revealed significant reductions in OPA1 and MFN2 in patients with Alzheimer's disease (AD). Our results indicate that miR-150-3p, miR-323-5p, and miR-370-3p contribute to deficits in hippocampal neurogenesis by modulating mitochondrial dynamics. Our findings provide novel insight into the intricate connections between miRNA and mitochondrial dynamics, shedding light on their potential involvement in conditions characterized by deficits in hippocampal neurogenesis, such as AD.

The Neuroprotective Effects of InSamYangYoung-tang(Renshenyangrongtang) on Aβ-induced Damages in Mice (인삼양영탕(人蔘養榮湯)이 Aβ를 처리한 PC12 세포와 생쥐의 손상 뇌신경조직에 미치는 영향)

  • Jang, Young-Joo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.1
    • /
    • pp.109-124
    • /
    • 2010
  • Objectives: This experiment was designed to investigate the effect of the InSamYangYoung-tang(Renshenyangrongtang) extract on $A{\beta}$-induced AD model. Methods: The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of cultured PC12 cells induced by $A{\beta}$ were investigated. The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of hippocampal and cortical neurons in the mouse induced by $\beta$-amyloid were investigated. Results: 1. $A{\beta}$ treatment into neuronal cells activated cell death pathway when analyzed by MTT assay and by histological analysis. Then InSamYangYoung-tang(Renshenyangrongtang) treatment improved cell survival to a similar level as in normal group. 2. $A{\beta}$ treatment increased caspase 3 protein levels but decreased phospho-Erk1/2 in neuronal cells. InSamYangYoung-tang(Renshenyangrongtang) treatment reversed the production levels of two proteins close to those in normal group. 3. $A{\beta}$ treatment induced the atrophy of neuronal cells in terms of neuronal processes and cell body shrinkage, but InSamYangYoung-tang(Renshenyangrongtang) greatly improved their morphology. 4. Neuroprotective activity, as observed in InSamYangYoung-tang(Renshenyangrongtang)-treated groups, was similarly observed in cells treated with galantamine which was used as a positive control. Moreover, overall recovery pattern by InSamYangYoung-tang(Renshenyangrongtang) was similar between cultured PC12 cells and in vivo hippocampal and cerebral cortical neurons in the mouse brain. Conclusions: This experiment shows that the InSamYangYoung-tang(Renshenyangrongtang) may play a protective role in neural tissues damaged by cytotoxic substances. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. InSamYangYoung-tang(Renshenyangrongtang) might be effective for the treatment of AD. Investigation into the clinical use of the InSamYangYoung-tang(Renshenyangrongtang) for AD is suggested for future research.

Neuroprotective and Anti-Oxidative Effect of Puerariae Radix on Hippocampal Neurons and BV-2 Microglia Cells (갈근(葛根)의 뇌해마(腦海馬) 신경세포 손상보호와 항산화(抗酸化) 효능에 대한 연구)

  • Kim, Sang-Hyun;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.416-425
    • /
    • 2005
  • This study demonstrated neuroprotective and anti-oxidative effects of Puerariae Radix for cerebral ischemia. Neuroprotective effects were studied by using oxygen/glucous deprivation of the organotypic hippocampal slice cultures to complement limitations of in vivo and in vitro models for cerebral ischemia study. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. The results obtained are as follows; The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in DG region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and DG region of ischemic damaged hippocampus cultures. The group treated with $50\;{\mu}g/m{\ell}$ of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. These results suggested that Puerariae Radix of cerebral ischemic revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.