Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0072

Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels  

Jeon, Seong Gak (Department of Biochemistry, College of Medicine, Konyang University)
Kim, Kyoung Ah (Department of Biochemistry, College of Medicine, Konyang University)
Chung, Hyunju (Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong)
Choi, Junghyun (Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong)
Song, Eun Ji (Department of Biochemistry, College of Medicine, Konyang University)
Han, Seung-Yun (Department of Anatomy, College of Medicine, Konyang University)
Oh, Myung Sook (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University)
Park, Jong Hwan (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University)
Kim, Jin-il (Department of Nursing, College of Nursing, Jeju National University)
Moon, Minho (Department of Biochemistry, College of Medicine, Konyang University)
Abstract
Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.
Keywords
adult neurogenesis; CD4 T cells; cognition; OT-II transgenic mice; Th2 cytokines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sierra, A., Encinas, J.M., and Maletic-Savatic, M. (2011). Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci. 5, 47.
2 Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458-461.   DOI
3 Taglialatela, G., Hogan, D., Zhang, W.R., and Dineley, K.T. (2009). Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav. Brain Res. 200, 95-99.   DOI
4 Tavakkol Afshari, J., Farid Hosseini, R., Hosseini Farahabadi, S., Heydarian, F., Boskabady, M.H., Khoshnavaz, R., Razavi, A., Ghayoor Karimiani, E., and Ghasemi, G. (2007). Association of the expression of IL-4 and IL-13 genes, IL-4 and IgE serum levels with allergic asthma. Iran J. Allergy Asthma Immunol. 6, 67-72.
5 Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327-1338.   DOI
6 Tsirakis, G., Pappa, C.A., Kaparou, M., Katsomitrou, V., Hatzivasili, A., Alegakis, T., Xekalou, A., Stathopoulos, E.N., and Alexandrakis, M.G. (2011). Assessment of proliferating cell nuclear antigen and its relationship with proinflammatory cytokines and parameters of disease activity in multiple myeloma patients. Eur. J. Histochem. 55, 27.   DOI
7 Walch, L., Massade, L., Dufilho, M., Brunet, A., and Rendu, F. (2006). Pro-atherogenic effect of interleukin-4 in endothelial cells: modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression. Atherosclerosis 187, 285-291.   DOI
8 Wolf, S.A., Steiner, B., Akpinarli, A., Kammertoens, T., Nassenstein, C., Braun, A., Blankenstein, T., and Kempermann, G. (2009a). CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 182, 3979-3984.   DOI
9 Wolf, S.A., Steiner, B., Wengner, A., Lipp, M., Kammertoens, T., and Kempermann, G. (2009b). Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB J. 23, 3121-3128.   DOI
10 Yirmiya, R., and Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immunity 25, 181-213.   DOI
11 Zhang, Z., Wang, H., Zhang, G., Hu, D., Xiong, J., Xiong, N., Wang, T., Cao, X., and Mao, L. (2014). Proliferating cell nuclear antigen binds DNA polymerase-beta and mediates 1-methyl-4-phenylpyridinium-induced neuronal death. PLoS One 9, e106669.   DOI
12 Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., Cohen, H., Kipnis, J., and Schwartz, M. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268-275.   DOI
13 Banchereau, J., and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245-252.   DOI
14 Ainge, J.A., Tamosiunaite, M., Woergoetter, F., and Dudchenko, P.A. (2007). Hippocampal CA1 place cells encode intended destination on a maze with multiple choice points. J. Neurosci. 27, 9769-9779.   DOI
15 Antunes, M., and Biala, G. (2012). The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process 13, 93-110.
16 Arai, Y., Pulvers, J.N., Haffner, C., Schilling, B., Nusslein, I., Calegari, F., and Huttner, W.B. (2011). Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154.   DOI
17 Bannerman, D.M., Sprengel, R., Sanderson, D.J., McHugh, S.B., Rawlins, J.N., Monyer, H., and Seeburg, P.H. (2014). Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15, 181-192.   DOI
18 Becker, S., Macqueen, G., and Wojtowicz, J.M. (2009). Computational modeling and empirical studies of hippocampal neurogenesis-dependent memory: Effects of interference, stress and depression. Brain Res. 24, 45-54.
19 Barnden, M.J., Allison, J., Heath, W.R., and Carbone, F.R. (1998). Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34-40.   DOI
20 Bartholomaus, I., Kawakami, N., Odoardi, F., Schlager, C., Miljkovic, D., Ellwart, J.W., Klinkert, W.E., Flugel-Koch, C., Issekutz, T.B., Wekerle, H., et al. (2009). Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94-98.   DOI
21 Bevins, R.A., and Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat. Protoc. 1, 1306-1311.   DOI
22 Broadbent, N.J., Gaskin, S., Squire, L.R., and Clark, R.E. (2009). Object recognition memory and the rodent hippocampus. Learn. Mem. 17, 5-11.
23 Brusselle, G.G., Kips, J.C., Tavernier, J.H., van der Heyden, J.G., Cuvelier, C.A., Pauwels, R.A., and Bluethmann, H. (1994). Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin. Exp. Allergy 24, 73-80.   DOI
24 Brynskikh, A., Warren, T., Zhu, J., and Kipnis, J. (2008). Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22, 861-869.   DOI
25 Bullens, D.M., Rafiq, K., Kasran, A., Van Gool, S.W., and Ceuppens, J.L. (1999). Naive human T cells can be a source of IL-4 during primary immune responses. Clin. Exp. Immunol. 118, 384-391.   DOI
26 Cushman, J., Lo, J., Huang, Z., Wasserfall, C., and Petitto, J.M. (2003). Neurobehavioral changes resulting from recombinase activation gene 1 deletion. Clin. Diagn. Lab. Immunol. 10, 13-18.
27 Caldera-Alvarado, G., Khan, D.A., Defina, L.F., Pieper, A., and Brown, E.S. (2013). Relationship between asthma and cognition: the Cooper Center Longitudinal Study. Allergy 68, 545-548.   DOI
28 Chatila, T.A. (2004). Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol. Med. 10, 493-499.   DOI
29 Choi, J.G., Moon, M., Jeong, H.U., Kim, M.C., Kim, S.Y., and Oh, M.S. (2011). Cistanches Herba enhances learning and memory by inducing nerve growth factor. Behav. Brain Res. 216, 652-658.   DOI
30 Deng, W., Aimone, J.B., and Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci.11, 339-350.   DOI
31 Derecki, N.C., Cardani, A.N., Yang, C.H., Quinnies, K.M., Crihfield, A., Lynch, K.R., and Kipnis, J. (2010). Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067-1080.   DOI
32 Erb, K.J., Ruger, B., von Brevern, M., Ryffel, B., Schimpl, A., and Rivett, K. (1997). Constitutive expression of interleukin (IL).-4 in vivo causes autoimmune-type disorders in mice. J. Exp. Med. 185, 329-339.   DOI
33 Furuta, K., Ishido, S., and Roche, P.A. (2012). Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells. Proc. Natl. Acad. Sci. USA 109, 19380-19385.   DOI
34 Gadani, S.P., Cronk, J.C., Norris, G.T., and Kipnis, J. (2012). IL-4 in the brain: a cytokine to remember. J. Immunol.189, 4213-4219.   DOI
35 Hoglinger, G.U., Breunig, J.J., Depboylu, C., Rouaux, C., Michel, P.P., Alvarez-Fischer, D., Boutillier, A.L., Degregori, J., Oertel, W.H., Rakic, P., et al. (2007). The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc. Natl. Acad. Sci. USA 104, 3585-3590.   DOI
36 Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., and Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13, 717-728.   DOI
37 Halim, T.Y., Steer, C.A., Matha, L., Gold, M.J., Martinez-Gonzalez, I., McNagny, K.M., McKenzie, A.N., and Takei, F. (2014). Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425-435.   DOI
38 Harper, R.W., Xu, C., Eiserich, J.P., Chen, Y., Kao, C.Y., Thai, P., Setiadi, H., and Wu, R. (2005). Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett. 579, 4911-4917.   DOI
39 Khoury, S.J., Hancock, W.W., and Weiner, H.L. (1992). Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355-1364.   DOI
40 Kipnis, J., Cohen, H., Cardon, M., Ziv, Y., and Schwartz, M. (2004). T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl. Acad. Sci. USA 101, 8180-8185.   DOI
41 Kipnis, J., Gadani, S., and Derecki, N.C. (2012). Pro-cognitive properties of T cells. Nature reviews. Immunology 12, 663-669.   DOI
42 Leung, S., Smith, D., Myc, A., Morry, J., and Baker, J.R., Jr. (2013). OT-II TCR transgenic mice fail to produce anti-ovalbumin antibodies upon vaccination. Cell Immunol. 282, 79-84.   DOI
43 Lafaille, J.J., Keere, F.V., Hsu, A.L., Baron, J.L., Haas, W., Raine, C.S., and Tonegawa, S. (1997). Myelin basic protein-specific T helper 2 (Th2). cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307-312.   DOI
44 Lee, S.Y., Kim, S.J., Kwon, S.S., Kim, Y.K., Kim, K.H., Moon, H.S., Song, J.S., and Park, S.H. (2001). Distribution and cytokine production of CD4 and CD8 T-lymphocyte subsets in patients with acute asthma attacks. Ann. Allergy Asthma Immunol. 86, 659-664.   DOI
45 Lee, W., Moon, M., Kim, H.G., Lee, T.H., and Oh, M.S. (2015). Heat stress-induced memory impairment is associated with neuroinflammation in mice. J. Neuroinflammation 12, 015-0324.   DOI
46 Mandyam, C.D., Harburg, G.C., and Eisch, A.J. (2007). Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience 146, 108-122.   DOI
47 Marin, I., and Kipnis, J. (2013). Learning and memory ... and the immune system. Learn. Mem. 20, 601-606.   DOI
48 McGowan, P.O., Hope, T.A., Meck, W.H., Kelsoe, G., and Williams, C.L. (2011). Impaired social recognition memory in recombination activating gene 1-deficient mice. Brain Res. 1383, 187-195.   DOI
49 Ming, G.L., and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223-250.   DOI
50 Moon, M., Song, H., Hong, H.J., Nam, D.W., Cha, M.Y., Oh, M.S., Yu, J., Ryu, H., and Mook-Jung, I. (2013). Vitamin D-binding protein interacts with Abeta and suppresses Abeta-mediated pathology. Cell. Death Differ. 20, 630-638.   DOI
51 Noben-Trauth, N., Hu-Li, J., and Paul, W.E. (2000). Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J. Immunol.165, 3620-3625.   DOI
52 Noben-Trauth, N., Hu-Li, J., and Paul, W.E. (2002). IL-4 secreted from individual naive CD4+ T cells acts in an autocrine manner to induce Th2 differentiation. Eur. J. Immunol. 32, 1428-1433.   DOI
53 Ouchi, Y., Banno, Y., Shimizu, Y., Ando, S., Hasegawa, H., Adachi, K., and Iwamoto, T. (2013). Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J. Neurosci. 33, 9408-9419.   DOI
54 Palumbo, M.L., Canzobre, M.C., Pascuan, C.G., Rios, H., Wald, M., and Genaro, A.M. (2010). Stress induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice: correlation with Th1/Th2 balance after stress exposure. J. Neuroimmunol. 218, 12-20.   DOI
55 Park, K.W., Baik, H.H., and Jin, B.K. (2008). Interleukin-4-induced oxidative stress via microglial NADPH oxidase contributes to the death of hippocampal neurons in vivo. Curr. Aging Sci. 1, 192-201.   DOI
56 Paunesku, T., Mittal, S., Protic, M., Oryhon, J., Korolev, S.V., Joachimiak, A., and Woloschak, G.E. (2001). Proliferating cell nuclear antigen (PCNA).: ringmaster of the genome. Int J. Radiat. Biol. 77, 1007-1021.   DOI
57 Rattazzi, L., Piras, G., Ono, M., Deacon, R., Pariante, C.M., and D'Acquisto, F. (2013). CD4(+). but not CD8(+). T cells revert the impaired emotional behavior of immunocompromised RAG-1-deficient mice. Transl. Psychiatry 3, e280.   DOI
58 Radjavi, A., Smirnov, I., Derecki, N., and Kipnis, J. (2014a). Dynamics of the meningeal CD4(+). T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol. Psychiatry 19, 531-533.   DOI
59 Radjavi, A., Smirnov, I. and Kipnis, J. (2014b). Brain antigenreactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav. Immun. 35, 58-63.   DOI
60 Rampon, C., Tang, Y.P., Goodhouse, J., Shimizu, E., Kyin, M., and Tsien, J.Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238-244.   DOI
61 Rivas, D., Mozo, L., Zamorano, J., Gayo, A., Torre-Alonso, J.C., Rodriguez, A., and Gutierrez, C. (1995). Upregulated expression of IL-4 receptors and increased levels of IL-4 in rheumatoid arthritis patients. J. Autoimmun. 8, 587-600.   DOI
62 Schloesser, R.J., Manji, H.K., and Martinowich, K. (2009). Suppression of Adult Neurogenesis Leads to an Increased HPA Axis Response. Neuroreport 20, 553-557.   DOI
63 Schwartz, M., Kipnis, J., Rivest, S., and Prat, A. (2013). How do immune cells support and shape the brain in health, disease, and aging? J. Neurosci. 33, 17587-17596.   DOI
64 Serre, K., Mohr, E., Gaspal, F., Lane, P.J., Bird, R., Cunningham, A.F., and Maclennan, I.C. (2010). IL-4 directs both CD4 and CD8 T cells to produce Th2 cytokines in vitro, but only CD4 T cells produce these cytokines in response to alum-precipitated protein in vivo. Mol. Immunol. 47, 1914-1922.   DOI