• 제목/요약/키워드: hinges

검색결과 351건 처리시간 0.024초

일반유한요소법을 이용한 집중소성힌지 모델링 (Plastic Hinge Modeling Based on Lumped Plasticity using a Generalized Finite Element Method)

  • 손홍준;이승호;김대진
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.381-388
    • /
    • 2018
  • 본 논문은 고전적인 오일러-베르누이 보의 집중소성힌지 모델링을 위한 일반유한요소법을 제안한다. 이 기법에서 소성힌지는 해의 약불연속을 묘사하는 적절한 확장함수에 의해 모델링되며, 요소간의 연결성을 변화시키지 않으면서 임의의 위치에 소성힌지를 삽입하는 것이 가능하다. 대신 소성힌지는 이미 존재하는 요소에 위계적으로 자유도를 추가함으로써 형성된다. 제안된 기법의 유효성을 검증하기 위해 수치해석 예제에 대해 h-, p-확장과 같은 수렴성 해석을 수행하였다. 수렴성 해석의 결과가 제안된 기법이 소성힌지가 절점 및 요소 내의 임의의 위치에 존재하는 두 가지 경우 모두에 대하여 유한요소이론에 의한 수렴속도를 얻을 수 있음을 보여주어 기법의 정확성을 입증하였다.

소성전단힌지를 갖는 PC 모멘트 골조의 내진성능 (Seismic Performance of PC Moment Frame with Plastic Shear Hinge)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제27권4호
    • /
    • pp.353-362
    • /
    • 2015
  • 이 연구에서는 소성 전단힌지가 있는 PC 모멘트 프레임의 내진성능을 평가하기 위해 반복 하중실험을 수행하였다. 보의 중간 길이에 설치된 소성 전단 힌지는 PC 골조를 연결하는 역할을 하며, 두 개의 강판으로 구성된다. 각 강판에는 세 개의 전단연결고리가 존재한다. 세 개의 전단 연결고리는 PC 보의 전단강도의 50%, 75%, 그리고 100%에 해당하는 전단강도를 사용하여 설계되었다. 제안된 연결방식은 효율적인 에너지 소산 용량 및 우수한 구조적 성능을 보여주었다. 실험결과, 소성 전단 힌지는 보 전단강도의 100% 미만을 사용하여 설계하는 것이 합리적이라 판단된다.

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

Progressive collapse resistance of low and mid-rise RC mercantile buildings subjected to a column failure

  • Demir, Aydin
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.563-576
    • /
    • 2022
  • This study aimed to evaluate the progressive collapse potential of buildings designed using conventional design codes for the merchant occupancy classification and subjected to a sudden column failure. For this purpose, three reinforced concrete buildings having different story numbers were designed according to the seismic design recommendations of TSCB-2019. Later on, the buildings were analyzed using the GSA-2016 and UFC 4-023-03 to observe their progressive collapse responses. Three columns were removed independently in the structures from different locations. Nonlinear dynamic analysis method for the alternate path direct design approach was implemented for the design evaluation. The plasticity of the structural members was simulated by using nonlinear fiber hinges. The moment, axial, and shear force interaction on the hinges was considered by the Modified Compression Field Theory. Moreover, an existing experimental study investigating the progressive collapse behavior of reinforced concrete structures was used to observe the validation of nonlinear fiber hinges and the applied analysis methodology. The study results deduce that a limited local collapse disproportionately more extensive than the initial failure was experienced on the buildings designed according to TSCB-2019. The mercantile structures designed according to current seismic codes require additional direct design considerations to improve their progressive collapse resistance against the risk of a sudden column loss.

반응표면분석법을 이용한 초정밀 마이크로스테이지의 설계 (Design of Ultra-precision Micro Stage using Response Surface Methodology)

  • 예상돈;민병현;이재광
    • 한국기계가공학회지
    • /
    • 제5권1호
    • /
    • pp.39-44
    • /
    • 2006
  • Ultra precision positioning mechanism has been widely used on semiconductor manufacturing equipments, optical spectrum analyzers and cell manipulations. Ultra precision positioning mechanism consists of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design and analyze the micro stage that is one of the equipments embodied in ultra precision positioning mechanism. The micro stage consists of PZT actuators and flexure hinges. The structural design of flexure hinge is optimized by using RSM and FEM. The control factors concerned with the design of flexure hinges of stage and arms are optimized by minimizing the equivalent stress on the hinge and maximizing 1st natural frequency based on RSM and FEM simulation under various kinds of design conditions.

  • PDF

Reliability of column capacity design in shear

  • Thomos, George C.;Trezos, Constantin G.
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.507-521
    • /
    • 2012
  • The capacity design of shear forces is one of the special demands of EC8 by which the ductile behavior of structures is implemented. The aim of capacity design is the formation of plastic hinges without shear failure of the elements. This is achieved by deriving the design shear forces from equilibrium conditions, assuming that plastic hinges, with their possible over-strengths, have been formed in the adjacent joints of the elements. In this equilibrium situation, the parameters (dimensions, material properties, axial forces etc) are random variables. Therefore, the capacity design of shear forces is associated with a probability of non-compliance (probability of failure). In the present study the probability of non-compliance of the shear capacity design in columns is calculated by assuming the basic variables as random variables. Parameters affecting this probability are examined and a modification of the capacity design is proposed, in order to achieve uniformity of the safety level.

Reliability based calibration of the capacity design rule of reinforced concrete beam-column joints

  • Thomos, George C.;Trezos, Constantin G.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.631-645
    • /
    • 2011
  • The capacity design rule for beam-column joints, as adopted by the EC8, forces the formation of the plastic hinges to be developed in beams rather than in columns. This is achieved by deriving the design moments of the columns of a joint from equilibrium conditions, assuming that plastic hinges with their possible overstrengths have been developed in the adjacent beams of the joint. In this equilibrium the parameters (dimensions, material properties, axial forces etc) are, in general, random variables. Hence, the capacity design is associated with a probability of non-compliance (probability of failure). In the present study the probability of non-compliance of the capacity design rule of joints is being calculated by assuming the basic variables as random variables. Parameters affecting this probability are examined and a modification of the capacity design rule for beam-column joints is proposed, in order to achieve uniformity of the safety level.

3차원 미세형상 측정용 탄성힌지 기반 압전구동식 격자 스캐너 (A Piezo-Driven Grating Scanner Based on Flexure Hinges for Measuring 3-Dimensional Microscopic Surface)

  • 최기봉;턴 알렉세이 대성;이재종;김성현;고국원;권순기
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.798-803
    • /
    • 2009
  • This paper proposes a grating scanner which is driven by a stack-type piezoelectric element. The mechanism of the grating scanner is based on flexure hinges. Using some constraints, the compliant mechanism is designed and then verified by Finite Element Analysis. The designed compliant mechanism is manufactured by wire electro-discharge machining, and then integrated with a stack-type piezoelectric element for actuation and a capacitance displacement sensor for measuring ultra-precision displacement. Experiments demonstrates the characteristics and the performances of the grating scanner using the terms of working range, resonance frequency, bandwidth and resolution. The grating scanner is applicable to a Moire interferometry for measuring 3-dimensional microscopic surface.

피에조 구동형 2축 스테이지의 설계 및 해석 (Design and Analysis of Two-Axis Stage Driven by Piezoelectric elements)

  • 류성훈;한창수;최기봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.742-745
    • /
    • 2003
  • Piezoelectric elements driven ultra-precision stages have been used for high accuracy, fast response and high load rapacity. which are allowable to apply the stages to AFMs. Most of the piezoelectric driven stages are guided by flexure hinges for force transmission and mechanical amplification. However the flexure hinge mechanisms cause lack of position accuracy due to coupled and parasitic motions. Hence it is important that the mechanism design of the stage is focused on the stiffness of the flexure hinges to accomplish fast response and hish accuracy without the coupled and parasitic motions. In this study, some constraints for optimal design of a piezoelectric elements driven stage and a design method are proposed. Next, an optimal design is carried out using mathematical calculation. Finally the designed results are verified by FEM.

  • PDF