DOI QR코드

DOI QR Code

Plastic Hinge Modeling Based on Lumped Plasticity using a Generalized Finite Element Method

일반유한요소법을 이용한 집중소성힌지 모델링

  • Son, Hong-Jun (Department of Architectural Engineering, Kyung Hee Univ.) ;
  • Rhee, Seung-Ho (Department of Architectural Engineering, Kyung Hee Univ.) ;
  • Kim, Dae-Jin (Department of Architectural Engineering, Kyung Hee Univ.)
  • Received : 2018.10.29
  • Accepted : 2018.11.01
  • Published : 2018.12.31

Abstract

This paper presents a generalized finite element formulation for plastic hinge modeling based on lumped plasticity in the classical Euler-Bernoulli beam elements. In this approach, the plastic hinges are effectively modeled using proper enrichment functions describing weak discontinuities of the solution. The proposed methodology enables the insertion of plastic hinges at an arbitrary location without modifying the connectivity of elements. The formations of plastic hinges are instead achieved by hierarchically adding degrees of freedom to existing elements. Convergence analyses such as h- and p-extensions are performed to investigate the effectiveness of the proposed method. The analysis results indicate that the proposed generalized finite element method can achieve theoretical convergence rates for both cases where plastic hinges are located at nodes and within an element, thus demonstrating its accuracy.

본 논문은 고전적인 오일러-베르누이 보의 집중소성힌지 모델링을 위한 일반유한요소법을 제안한다. 이 기법에서 소성힌지는 해의 약불연속을 묘사하는 적절한 확장함수에 의해 모델링되며, 요소간의 연결성을 변화시키지 않으면서 임의의 위치에 소성힌지를 삽입하는 것이 가능하다. 대신 소성힌지는 이미 존재하는 요소에 위계적으로 자유도를 추가함으로써 형성된다. 제안된 기법의 유효성을 검증하기 위해 수치해석 예제에 대해 h-, p-확장과 같은 수렴성 해석을 수행하였다. 수렴성 해석의 결과가 제안된 기법이 소성힌지가 절점 및 요소 내의 임의의 위치에 존재하는 두 가지 경우 모두에 대하여 유한요소이론에 의한 수렴속도를 얻을 수 있음을 보여주어 기법의 정확성을 입증하였다.

Keywords

References

  1. Chen, W.F., Sohal, I. (2013) Plastic Design and Second-order Analysis of Steel Frames, Springer, New Yok, p.509.
  2. Choi, W.-J., Kim, M.-S., Kim, D.-J., Lee, Y.-H., Kim, H.-C. (2011) Application of the Preconditioned Conjugate Gradient Method to the Generalized Finite Element Method with Global-local Enrichment Functions, J. Comput. Struct. Eng. Inst. Korea, 24(4), pp.405-412.
  3. Duarte, C.A., Babuska, I., Oden, J.T. (2000) Generalized Finite Element Methods for Three Dimensional Structural Mechanics Problems, Comput. & Struct., 77(2), pp.215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
  4. Fries, T.-P., Belytschko, T. (2010) The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications, Int. J. Numer. Methods Eng., 84, pp.253-304.
  5. Kim, D.-J., Duarte, C.A., Proenca, S.P. (2012) A Generalized Finite Element Method with Global-Local Enrichment Functions for Confined Plasticity Problems, Comput. Mech., 50(5), pp.563-578. https://doi.org/10.1007/s00466-012-0689-7
  6. Moes, N., Cloirec, M., Cartraud, P., Remacle, J.-F. (2003) A Computational Approach to Handle Complex Microstructure Geometries, Comput. Methods Appl. Mech. & Eng., 192(28-30), pp.3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3
  7. Park, K., Kim, H., Kim, D.-J. (2018) Generalized Finite Element Formulation of Fiber Beam Elements for Distributed Plasticity in Multiple Regions, Computer-Aided Civil & Infrastruct. Eng., Accepted for Publication.
  8. Son, H., Park, J., Kim, H., Lee, Y.H., Kim, D.-J. (2017) Generalized Finite Element Analysis of High-Rise Wall-Frame Structural Systems, Eng. Comput., 34(1), pp.189-210. https://doi.org/10.1108/EC-07-2016-0266
  9. Sozen, M.A., Thornton, C.H., Corley, W.G., Mlakar Sr, P.F. (1998) The Oklahoma City Bombing: Structure and Mechanisms of the Murrah Building. J. Perform. Constr. Facil., 12(3), pp.120-136. https://doi.org/10.1061/(ASCE)0887-3828(1998)12:3(120)
  10. Szabo, B., Babuska, I. (1991) Finite Element Analysis, John Wiley and Sons, New York, p.368.
  11. Wu, J.Y., Lindell, M.K. (2004) Housing Reconstruction After Two Major Earthquakes: The 1994 Northridge Earthquake in the United States and the 1999 Chi-Chi Earthquake in Taiwan, Disasters, 28(1), pp.63-81. https://doi.org/10.1111/j.0361-3666.2004.00243.x