• Title/Summary/Keyword: highly sensitive magnetic field sensor

Search Result 13, Processing Time 0.052 seconds

Highly-sensitive Magnetic Sensor using the Amplitude-Modulation (진폭변조를 이용한 고감도 자기센서)

  • 이상훈;남태철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.90-95
    • /
    • 1995
  • This paper describes the highly-sensitive Si magnetic sensor using the amplitude modulation in order to real ice the integrated magnetic sensor which to sensor a weak magnetic field. Generally, the most important two parameters in Hall IC which degrade the ability of magnetic detection are the variation of offset according to the variation of temperature and the noise of amplifiers. In this paper, we use a Hall element and compensator to reduce the offset and the nouse of amplifiers by Using amplititude modulation method.

  • PDF

Properties of Filter type Magnetoimpedance Sensor (필터타입으로 구성한 자기임피던스센서의 특성)

  • SaGong, Geon;Kim, Young-Hak;Shin, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.337-340
    • /
    • 2004
  • To develop the highly sensitive Magneto-Impedance sensor, the amorphous ribbon was micro-processed to meander type sensor pattern and the filter circuit was constructed with this pattern. Its external magnetic field dependence of impedance and the output properties of the filter circuit were investigated. The impedance of the pattern had a peak value at the magnetic field of 10 Oe and its changing ratio was about 280%. The impedance change per unit magnetic field was about 36%, in which the output with high sensitivity and linearity could be obtained. The output sensitivity was about 7%/Oe at bias field of 6 Oe..

  • PDF

Magnet Location Estimation Technology in 3D Using MI Sensors (MI센서를 이용한 3차원상 자석 위치 추정 기술)

  • Ju Hyeok Jo;Hwa Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.232-237
    • /
    • 2023
  • This paper presents a system for estimating the position of a magnet using a magnetic sensor. An algorithm is presented to analyze the waveform and output voltage values of the magnetic field generated at each position when the magnet moves and to estimate the position of the magnet based on the analyzed data. Here, the magnet is sufficiently small to be inserted into a blood vessel and has a micro-magnetic field of hundreds of nanoteslas owing to the small size and shape of the guide wire. In this study, a highly sensitive magneto-impedance (MI) sensor was used to detect these micro-magnetic fields. Nine MI sensors were arranged in a 3×3 configuration to detect a magnetic field that changes according to the position of the magnet through the MI sensor, and the voltage value output was polynomially regressed to specify a position value for each voltage value. The accuracy was confirmed by comparing the actual position value with the estimated position value by expanding it from a 1D straight line to a 3D space. Additionally, we could estimate the position of the magnet within a 3% error.

Fabrication and Properties of MI Sensor Device using CoZrNb Films (CoZrNb막을 이용한 MI센서 소자의 제작 및 특성)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;Sa-Gong, G.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • Magneto-Impedance(MI) sensor is a highly sensitive sensor, which was able to detect a weak geomagnetic field. It also has a merit to be able to build in the low power system. In this study, their magnetic permeability and anisotropy field(H$\sub$k/) as a function of some different thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and 320$^{\circ}C$ respectively for 2 hours. Magnetic properties of films are measured by using a M-H loop tracer. Magnetic permeability of a film is measured over the frequency range from 1 ㎒ to 750㎒. By thickening a CoZrNb film relatively, magnetic permeability and impedance are examine to design the. MI sensor which drives at 50㎒, and thereof fabricated the MI sensor which drives at the 50㎒.

A pin type current probe using Planar Hall Resistance magnetic sensor (PHR 자기센서를 적용한 탐침형 전류 프로브)

  • Lee, Dae-Sung;Lee, Nam-Young;Hong, Sung-Min;Kim, CheolGi
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.342-348
    • /
    • 2021
  • For the characterization or failure analysis of electronic devices such as PCB (printed circuit boards), the most common method is the measurement of voltage waveforms with an oscilloscope. However, because there are many types of problems that cannot be detected by voltage waveform analysis, several other methods such as X-ray transmission, infrared imaging, or eddy current measurement have been applied for these analyses. However, these methods have also been limited to general analyses because they are partially useful in detecting physical defects, such as disconnections or short circuits. Fundamentally current waveform measurements during the operation of electronic devices need to be performed, however, commercially available current sensors have not yet been developed, particularly for applications in highly integrated PCB products with sub-millimeter fine pitch. In this study, we developed a highly sensitive PHR (planar hall resistance) magnetic sensor for application in highly integrated PCBs. The developed magnetic sensor exhibited sufficient features of an ultra-small size of less than 340 ㎛, magnetic field resolution of 10 nT, and current resolution of 1 mA, which can be applicable for PCB analyses. In this work, we introduce the development process of the magnetic sensing probe and its characteristic results in detail, and aim to extend this pin-type current probe to applications such as current distribution imaging of PCBs.

Magnetic Field Sensors using Co-base Amorphous Ribbon (Co계 아몰퍼스리본을 이용한 자계센서)

  • Shin, Kwang-Ho;Park, Kyung-Il;Song, Jae-Yeon;Kim, Young-Hak;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.205-210
    • /
    • 2003
  • To develop the highly sensitive Magneto-Impedance sensor, the amorphous ribbon was micro-processed to meander type sensor pattern, and its external magnetic field dependence of impedance was investigated. The impedance of the pattern had peak value at the magnetic field of 13 Oe and its changing ratio was about 170%. The impedance change per unit magnetic field was about 36% at bias field of 6 Oe, in which the output with high sensitivity and linearity could be obtained. The magnetic field resolution of the sensor module, which consist of the amorphous pattern and driving circuit, was about $10^{-3}$ Oe.

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.

A Study of Slope Movements Using Fibre Optic Distributed Deformation Sensor (분포형 광섬유센서를 활용한 지표이동 측정에 관한 연구)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • Optical fibre sensors have shown a potential to serve real time health monitoring of Slope and structure. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory on slope and field tests using a novel optical sensor based on Brillouin scattering and PVC pipe. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Slope.

  • PDF

A Study of Slope Movements using Fibre Optic Distributed Deformation Sensor (분포형 광섬유센서를 활용한 지표이동 측정에 관한 연구)

  • 장기태
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.475-482
    • /
    • 2002
  • Optical fibre sensors have shown a potential to serve real time health monitoring of Slope and structure. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory on slope and field tests using a novel optical sensor based on Brillouin scattering and PVC pipe. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Slope.

  • PDF

Application of Brillouin Scattering Sensor for Broader Area Slope Movement (광 산란파를 이용한 광역 사면 거동 예측)

  • 장기태;이쌍덕;유병선;김경태;정성윤;이원효
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.223-232
    • /
    • 2000
  • Optical fibre sensors have shown a potential to serve real time health monitoring of the structures. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory and field tests using a novel optical sensor based on Brillouin scattering. One of the advantages of this technique is that the bare fibre itself acts as sensing element without any special fibre processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Civil Engineering Smart Structures.

  • PDF