• Title/Summary/Keyword: higher-order differential equation

Search Result 76, Processing Time 0.023 seconds

SOLUTIONS OF STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.231-243
    • /
    • 2007
  • The existence of solutions of a class of two-point boundary value problems for higher order differential equations is studied. Sufficient conditions for the existence of at least one solution are established. It is of interest that the nonlinearity f in the equation depends on all lower derivatives, and the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bound of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

Some Identities Involving Euler Polynomials Arising from a Non-linear Differential Equation

  • Rim, Seog-Hoon;Jeong, Joohee;Park, Jin-Woo
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.553-563
    • /
    • 2013
  • We derive a family of non-linear differential equations from the generating functions of the Euler polynomials and study the solutions of these differential equations. Then we give some new and interesting identities and formulas for the Euler polynomials of higher order by using our non-linear differential equations.

OSCILLATION OF HIGHER-ORDER NEUTRAL DIFFERENTIAL EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS AND MIXED ARGUMENTS

  • Sun, Yuangong;Liu, Zhi
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.199-209
    • /
    • 2013
  • In this paper, we study the oscillation problem of the following higher-order neutral differential equation with positive and negative coefficients and mixed arguments $$z^{(n)}(t)+q_1(t)|x(t-{\sigma}_1)|^{\alpha-1}x(t-{\sigma}_1)+q_2(t)|x(t-{\sigma}_2)|^{\beta-1}x(t-{\sigma}_2)=e(t)$$, where $t{\geq}t_0$, $z(t)=x(t)-p(t)x(t-{\tau})$ with $p(t)$ > 0, ${\beta}>1>{\alpha}>0$, ${\tau}$, ${\sigma}_1$ and ${\sigma}_2$ are real numbers. Without imposing any restriction on ${\tau}$, we establish several oscillation criteria for the above equation in two cases: (i) $q_1(t){\leq}0$, $q_2(t)>0$, ${\sigma}_1{\geq}0$ and ${\sigma}_2{\leq}{\tau}$; (ii) $q_1(t){\geq}0$, $q_2(t)<0$, ${\sigma}_1{\geq}{\tau}$ and ${\sigma}_2{\leq}0$. As an interesting application, our results can also be applied to the following higher-order differential equation with positive and negative coefficients and mixed arguments $$x^{(n)}(t)+q_1(t)|x(t-{\sigma}_1)|^{\alpha-1}x(t-{\sigma}_1)+q_2(t)|x(t-{\sigma}_2)|^{\beta-1}x(t-{\sigma}_2)=e(t)$$. Two numerical examples are also given to illustrate the main results.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

GROWTH AND FIXED POINTS OF MEROMORPHIC SOLUTIONS OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Xu, Jun-Feng;Yi, Hong-Xun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.747-758
    • /
    • 2009
  • In this paper, we investigate the growth and fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives. Because of the restriction of differential equations, we obtain that the properties of fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives are more interesting than that of general transcendental meromorphic functions. Our results extend the previous results due to M. Frei, M. Ozawa, G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

ON THE BOUNDARY VALUE PROBLEMS FOR LOADED DIFFERENTIAL EQUATIONS

  • Dzhenaliev, Muvasharkhan T.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1031-1042
    • /
    • 2000
  • The equations prescribed in Ω⊂R(sup)n are called loaded, if they contain some operations of the traces of desired solution on manifolds (of dimension which is strongly less than n) from closure Ω. These equations result from approximations of nonlinear equations by linear ones, in the problems of optimal control when the control when the control actions depends on a part of independent variables, in investigations of the inverse problems and so on. In present work we study the nonlocal boundary value problems for first-order loaded differential operator equations. Criterion of unique solvability is established. We illustrate the obtained results by examples.

  • PDF