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REVISIT NONLINEAR DIFFERENTIAL EQUATIONS

ASSOCIATED WITH EULERIAN POLYNOMIALS

Dae San Kim and Taekyun Kim

Abstract. In this paper, we present nonlinear differential equations aris-
ing from the generating function of the Eulerian polynomials. In addition,
we give explicit formulae for the Eulerian polynomials which are derived
from our nonlinear differential equations.

1. Introduction

For N ∈ N, the generalized harmonic numbers are defined as

(1.1) HN,1 = HN = 1 +
1

2
+ · · ·+

1

N
,

and
(1.2)

HN,j =
HN−1,j−1

N
+

HN−2,j−1

N − 1
+ · · ·+

Hj−1,j−1

j
, (2 ≤ j ≤ N) (see [10]) .

It is well known that the Eulerian polynomials An (t) are defined by the
following generating function

(1.3)
1− t

ex(t−1) − t
= eA(t)x =

∞
∑

n=0

An (t)
xn

n!
, (see [11]) ,

with the usual convention about replacing An (t) by An (t).
Thus, by (1.3), we get

(1.4) A0 (t) = 1, An (t) =

n−1
∑

k=0

(

n

k

)

Ak (t) (t− 1)
n−1−k

, (n ≥ 1) ,

and

(1.5) (A (t) + (t− 1))
n
− tAn (t) =

{

1− t if n = 0,

0 if n > 0.

Received March 31, 2016; Revised November 22, 2016; Accepted February 20, 2017.
2010 Mathematics Subject Classification. 05A19, 11B83, 34A34.
Key words and phrases. Eulerian polynomials, higher-order Eulerian polynomials, non-

linear differential equation.

c©2017 Korean Mathematical Society

1185



1186 D. S. KIM AND T. KIM

From (1.3), (1.4) and (1.5), we note that

(1.6)
m
∑

i=1

inti =
n
∑

l=1

(−1)n+l

(

n

l

)

tm+1An−l (t)

(t− 1)n−l+1
ml + (−1)n

t (tm − 1)

(t− 1)n+1An (t) ,

where m ≥ 1 and n ≥ 0 (see [11]).
In [2], Kim and Bayad considered the following nonlinear differential equa-

tions related to Apostol-Bernoulli-Euler numbers:

(1.7) (N − 1)!yN =

N
∑

k=1

ak (N) y(k−1), (N ∈ N) ,

where y(k) =
(

d
dt

)k
y (t).

Recently, Kim and Kim studied the following nonlinear differential equations
arising from the generating function of degenerate Euler and Bernoulli numbers.
For example, with N ∈ N,

(1.8) F (N) =
(−1)

N

(1 + λt)N

N+1
∑

i=1

ai (N, λ)F i, (see [14]) ,

where F = F (t) = 1

(1+λt)
1

λ −1
, F (k) =

(

d
dt

)k
F (t), and

ai (N, λ)

= (i− 1)!λN−i+1
N−i+1
∑

mi−1=0

N−mi−1−i+1
∑

mi−2=0

· · ·

N−mi−1−···−m2−i+1
∑

m1=0

(

N −mi−1 +
i

λ

)

mi−1

×

(

N −mi−1 −mi−2 − 1 +
i− 1

λ

)

mi−2

· · ·

(

N −mi−1 − · · · −m1 − i+ 2 +
2

λ

)

m1

×

(

1

λ

)

N−mi−1−mi−2−···−m1−i+1

.

We also refer to [1–19] for some related results in the area of the Eulerian
polynomials. In this paper, we revisit nonlinear differential equations arising
from the generating function of the Eulerian polynomials. In addition, we
give explicit formulas for the Eulerian polynomials which are derived from our
nonlinear differential equations.

2. The statement of main results

Let

(2.1) F = F (x, t) =
1

ex(t−1) − t
, (t 6= 1) .
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All differentiations in this paper are with respect to x, while t is being fixed.
That is,

(2.2) F (k) =

(

d

dx

)k

F (x, t) , (k ∈ N) .

From (2.1), we note that

(2.3) F (1) =
d

dx
F (x, t) = (1− t)

(

F + tF 2
)

.

Thus, by (2.3), we get

(2.4) t (1− t)F 2 = F (1) − (1− t)F.

From (2.4), we can derive the following equations:

(2.5) 2!t2 (1− t)
2
F 3 = F (2) − 3 (1− t)F (1) + 2! (1− t)

2
F,

and

(2.6) 3!t3 (1− t)
3
F 4 = −3! (1− t)

3
F +11 (1− t)

2
F (1)−6 (1− t)F (2)+F (3).

Continuing this process, we are led to put

(2.7) N !tN (1− t)
N
FN+1 =

N
∑

i=0

ai (N) (1− t)
N−i

F (i),

where N = 0, 1, 2, . . . .
Thus, by (2.7), we get

(2.8) (N + 1)!tN (1− t)
N
FNF (1) =

N
∑

i=0

ai (N) (1− t)
N−i

F (i+1).

From (2.3) and (2.8), we have

(2.9) (N + 1)!tN (1− t)N+1
FN

(

F + tF 2
)

=

N
∑

i=0

ai (N) (1− t)N−i
F (i+1).

Thus, by (2.7) and (2.9), we get

(N + 1)!tN+1 (1− t)
N+1

FN+2

(2.10)

= − (N + 1)!tN (1− t)
N+1

FN+1 +

N
∑

i=0

ai (N) (1− t)
N−i

F (i+1)

= − (N + 1) (1− t)

N
∑

i=0

ai (N) (1− t)N−i
F (i) +

N
∑

i=0

ai (N) (1− t)N−i
F (i+1)

= − (N + 1)

N
∑

i=0

ai (N) (1− t)
N+1−i

F (i) +

N+1
∑

i=1

ai−1 (N) (1− t)
N+1−i

F (i).
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On the other hand, by replacing N by N + 1 in (2.7), we get

(2.11) (N + 1)!tN+1 (1− t)N+1
FN+2 =

N+1
∑

i=0

ai (N + 1) (1− t)N+1−i
F (i).

Comparing the coefficients on both sides of (2.10) and (2.11), we have

(2.12) a0 (N + 1) = − (N + 1) a0 (N) , aN+1 (N + 1) = aN (N) ,

and

(2.13) ai (N + 1) = − (N + 1) ai (N) + ai−1 (N) , (1 ≤ i ≤ N) .

Moreover, from (2.7) for N = 0, we obtain

(2.14) a0 (0) = 1.

Also, comparing (2.4) with (2.7) for N = 1, we get

(2.15) a1 (1) = 1, a0 (1) = −1.

By (2.12), we easily get

(2.16)
a0 (N + 1) = (−1)

N+1
(N + 1)!,

aN+1 (N + 1) = aN (N) = · · · = a1 (1) = a0 (0) = 1.

Now, we observe that the matrix (ai (j))0≤i,j≤N is given by

1 −1! (−1)22! (−1)33! · · · (−1)NN !

1

1

1

.. .

1

















































.

0 1 2 3 N

0
1

2

3

N
0

For i = 1 in (2.13), we have

a1 (N + 1)(2.17)

= a0 (N)− (N + 1) a1 (N)

= a0 (N)− (N + 1) (a0 (N − 1)−Na1 (N − 1))

= a0 (N)− (N + 1) a0 (N − 1) + (−1)
2
(N + 1)Na1 (N − 1)

= a0 (N)− (N + 1) a0 (N − 1)

+ (−1)
2
(N + 1)N (a0 (N − 2)− (N − 1) a1 (N − 2))

...
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=
N−1
∑

k=0

(−1)k (N + 1)k a0 (N − k) + (−1)N (N + 1)N a1 (1)

=

N
∑

k=0

(−1)
k
(N + 1)k a0 (N − k) ,

where (x)n = x (x− 1) · · · (x− n+ 1), (n ≥ 1), and (x)0 = 1.
Let i = 2 in (2.13). Then, we see that

a2 (N + 1)(2.18)

= a1 (N)− (N + 1)a2 (N)

= a1 (N)− (N + 1) (a1 (N − 1)−Na2 (N − 1))

= a1 (N)− (N + 1)a1 (N − 1) + (−1)
2
(N + 1)Na2 (N − 1)

= a1 (N)− (N + 1)a1 (N − 1)

+ (−1)
2
(N + 1)N (a1 (N − 2)− (N − 1) a2 (N − 2))

...

=

N−2
∑

k=0

(−1)
k
(N + 1)k a1 (N − k) + (−1)

N−1
(N + 1)N−1 a2 (2)

=

N−1
∑

k=0

(−1)
k
(N + 1)k a1 (N − k) .

For i = 3 in (2.13), it is not difficult to show that

(2.19) a3 (N + 1) =

N−2
∑

k=0

(−1)
k
(N + 1)k a2 (N − k) .

So, we can deduce that, for 1 ≤ i ≤ N ,

(2.20) ai (N + 1) =

N+1−i
∑

k=0

(−1)
k
(N + 1)k ai−1 (N − k) .

To find explicit expressions for ai (N + 1), we recall the definition for the
generalized harmonic numbers HN,i, defined for all N with N ≥ i for each i

with 1 ≤ i ≤ N :

(2.21) HN,1 =
1

N
+

1

N − 1
+ · · ·+

1

1
,

and

(2.22) HN,i =
HN−1,i−1

N
+

HN−2,i−1

N − 1
+ · · ·+

Hi−1,i−1

i
, (2 ≤ i ≤ N) .
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From (2.16)-(2.19), we have

a1 (N + 1) =
N
∑

k=0

(−1)k (N + 1)k a0 (N − k)(2.23)

=

N
∑

k=0

(−1)
k
(N + 1)k (−1)

N−k
(N − k)!

= (−1)
N
(N + 1)!

N
∑

k=0

1

N − k + 1

= (−1)
N
(N + 1)!

(

1

N + 1
+

1

N
+ · · ·+

1

1

)

= (−1)
N
(N + 1)!HN+1,1,

a2 (N + 1) =

N−1
∑

k=0

(−1)
k
(N + 1)k a1 (N − k)(2.24)

=

N−1
∑

k=0

(−1)
k
(N + 1)k (−1)

N−k−1
(N − k)!HN−k,1

= (−1)N−1 (N + 1)!
N−1
∑

k=0

HN−k,1

N − k + 1

= (−1)
N−1

(N + 1)!

(

HN,1

N + 1
+

HN−1,1

N
+ · · ·+

H1,1

2

)

= (−1)
N−1

(N + 1)!HN+1,2,

and

a3 (N + 1) =
N−2
∑

k=0

(−1)k (N + 1)k a2 (N − k)(2.25)

= (−1)
N−2

N−2
∑

k=0

(N + 1)k (N − k)!HN−k,2

= (−1)
N−2

(N + 1)!

N−2
∑

k=0

HN−k,2

N − k + 1

= (−1)
N−2

(N + 1)!

(

HN,2

N + 1
+

HN−1,2

N
+ · · ·+

H2,2

3

)

= (−1)
N−2

(N + 1)!HN+1,3.

Thus, we can deduce that, for 1 ≤ i ≤ N ,

(2.26) ai (N + 1) = (−1)
N−i+1

(N + 1)!HN+1,i.
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Therefore, we obtain the following theorem.

Theorem 1. For N ∈ N, the nonlinear differential equations

N !tN (1− t)N FN+1 =
N
∑

i=0

ai (N) (1− t)N−i
F (i)

have a solution F = F (x, t) = 1
ex(t−1)−t

, (t 6= 1), where

a0 (N) = (−1)
N
N !, ai (N) = (−1)

N−i
N !HN,i, (1 ≤ i ≤ N) .

For r ∈ N, the higher-order Eulerian polynomials are defined by the gener-
ating function

(2.27)

(

1− t

ex(t−1) − t

)r

=

∞
∑

n=0

A(r)
n (t)

xn

n!
.

From (2.1) and (2.27), we have

N !tN (1− t)
N
FN+1 = N !tN (1− t)

N

(

1

ex(t−1) − t

)N+1

(2.28)

= N !tN (1− t)−1

(

1− t

ex(t−1) − t

)N+1

= N !tN (1− t)−1
∞
∑

k=0

A
(N+1)
k (t)

xk

k!
.

We observe that

N
∑

i=0

ai (N) (1− t)
N−i

F (i)(2.29)

=

N
∑

i=0

ai (N) (1− t)
N−i

(

1

ex(t−1) − t

)(i)

=
N
∑

i=0

ai (N) (1− t)N−i−1

(

1− t

ex(t−1) − t

)(i)

=

N
∑

i=0

ai (N) (1− t)
N−i−1

∞
∑

k=0

Ak+i (t)
xk

k!
.

From Theorem 1, (2.28) and (2.29), we have

(2.30) N !tN (1− t)−1
A

(N+1)
k (t) =

N
∑

i=0

ai (N) (1− t)N−i−1
Ak+i (t) .

Therefore, by (2.30), we obtain the following theorem.
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Theorem 2. For N, k = 0, 1, 2, . . . , N , we have

N !tNA
(N+1)
k (t) =

N
∑

i=0

ai (N) (1− t)
N−i

Ak+i (t) ,

where a0 (N) = (−1)
N
N !, ai (N) = (−1)

N−i
N !HN,i, (1 ≤ i ≤ N) .

Recall here that

(2.31)
An (t)

(1− t)n+1 =
∞
∑

j=0

tj (j + 1)n , (n ≥ 0) .

By applying (2.31) to Theorem 2, we have

N !tNA
(N+1)
k (t) =

N
∑

i=0

ai (N) (1− t)
N−i

(1− t)
k+i+1 Ak+i (t)

(1− t)
k+i+1

(2.32)

=

N
∑

i=0

ai (N) (1− t)
N+k+1

∞
∑

j=0

tj (j + 1)
k+i

=

N
∑

i=0

ai (N)

∞
∑

l=0

(−1)
l

(

N + k + 1

l

)

tl
∞
∑

j=0

tj (j + 1)
k+i

=

N
∑

i=0

ai (N)

∞
∑

m=0

(

m
∑

l=0

(−1)
l

(

N + k + 1

l

)

(m− l + 1)
k+i

)

tm

=
∞
∑

m=0

(

N
∑

i=0

m
∑

l=0

(−1)l
(

N + k + 1

l

)

(m− l+ 1)k+i
ai (N)

)

tm.

Comparing the degrees on both sides of (2.32) gives the following theorem.

Theorem 3.

(1) For k ≥ 1, we have

N !tNA
(N+1)
k (t)=

k+N−1
∑

m=0

(

N
∑

i=0

m
∑

l=0

(−1)
l

(

N + k + 1

l

)

(m− l + 1)
k+i

ai (N)

)

tm,

and

N
∑

i=0

m
∑

l=0

(−1)l
(

N + k + 1

l

)

(m− l + 1)k+i
ai (N) = 0 for all m ≥ k +N.

(2) For k = 0, we have

N !tNA
(N+1)
0 (t) =

N
∑

m=0

N
∑

i=0

m
∑

l=0

(−1)
l

(

N + 1

l

)

(m− l + 1)
i
ai (N) tm,
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and
N
∑

i=0

m
∑

l=0

(−1)
l

(

N + 1

l

)

(m− l + 1)
i
ai (N) = 0 for all m ≥ N + 1,

where a0 (N) = (−1)N N !, ai (N) = (−1)N−i
N !HN,i, (1 ≤ i ≤ N) .
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