• Title/Summary/Keyword: high-throughput system

Search Result 624, Processing Time 0.025 seconds

The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C.;Oliveira, Ana Paula;Patil, Kiran Raosaheb;Nielsen, Jens
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.385-399
    • /
    • 2005
  • The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

A Disk Allocation Scheme for High-Performance Parallel File System (고성능 병렬화일 시스템을 위한 디스크 할당 방법)

  • Park, Kee-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.2827-2835
    • /
    • 2000
  • In recent years, much attention has been focused on improving I/O devices' processing speed which is essential in such large data processing areas as multimedia data processing. And studies on high-performance parallel file systems are considered to be one of such efforts. In this paper, an efficient disk allocation scheme is proposed for high-performance parallel file systems. In other words, the concept of a parallel disk file's parallelism is defined using data declustering characteristic of a given parallel file. With the concept, an efficient disk allocation scheme is proposed which calculates the appropriate degree of data declustering on disks for each parallel file in order to obtain the maximum throughput when more than one parallel file is used at the same time. Since, calculation for obtaining the maximum throughput is too complex as the number of parallel files increases, an approximate disk allocation algorithm is also proposed in this paper. The approximate algorithm is very simple and especially provides very good results when I/O workload is high. In addition, it has shown that the approximate algorithm provides the optimal disk allocation for the maximum throughput when the arrival rate of I/O requests is infinite.

  • PDF

Ultra-fast Generic LC-MS/MS Method for High-Throughput Quantification in Drug Discovery

  • Kim, So-Hee;Yoo, Hye Hyun;Cha, Eun-Ju;Jeong, Eun Sook;Kim, Ho Jun;Kim, Dong Hyun;Lee, Jaeick
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.47-50
    • /
    • 2013
  • An ultra-fast generic LC-MS/MS method was developed for high-throughput quantification of discovery pharmacokinetic (PK) samples and its reliability was verified. The method involves a simple protein precipitation for sample preparation and the analysis by ultra-fast generic LC-MS/MS with the ballistic gradient program and selected reaction monitoring (SRM) mode. Approximately 290 new chemical entities (NCEs) (over 10,000 samples) from 5 therapeutic programs were analyzed. The calibration curves showed good linearity in the concentration range of 1, 2 or 5 to 2000 ng/mL. No significant ion suppression was observed in the elution region of all the NCEs. When approximately 300 plasma samples were continuously analyzed, the peak area of internal standard was constant and reproducible. In the repeated analysis of samples, the plasma concentrations and the area under the curve (AUC) were consistent with the results from the first analysis. These results showed that the present ultra-fast generic LC-MS/MS method is reliable in terms of selectivity, sensitivity, and reproducibility and could be useful for high-throughput quantification and other bioanalysis in drug discovery.

Performance Evaluation of Turbo coded Adaptive QAM Systems for High-speed Mobile Multimedia Communications (고속 이동 멀티미디어 통신을 위한 터보 부호 적응 QAM 시스템의 성능 분석)

  • 백흥현;정연호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.216-222
    • /
    • 2004
  • Frequency selective fading is a limiting factor for transmission rate and performance in high-speed multimedia communications. In this paper, we propose a turbo coded adaptive quadrature amplitude modulation (QAM) system for efficient high-speed transmission. By making use of a user-friendly simulation platform of SPW, the proposed turbo coded adaptive QAM system(TuAQAM) is developed and its performance is evaluated in terms of throughput and BER performance. Two channel models having delay spreads of 700ns and 1400ns are created for the simulations. It is shown that the proposed TuAQAM system provides a performance improvement of approximately 3dB and improved throughput for the channel model whose delay spread is 700ns. Similarly, a performance improvement is also achieved for the channel model whose delay spread is 1400ns.

  • PDF

Flexibility Measurement Model for Cellular Manufacturing Systems (셀 형태의 생산 시스템의 유연성 측정 모형)

  • Jung, Eun-Kyung;Jeon, Tae-Bo;Kim, Young-Hui
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.91-102
    • /
    • 1993
  • This paper suggests an approach to quantitative evaluation of a manufacturing flexibility in automated manufacturing systems. The flexibility of a cell is newly defined and evaluated in use of the environmental change factors which may influence flexibility for satisfying a manufacturing performance objective. The number of machines, the number of operations, machine breakdowns and processing times are considered for this cell flexibility measure. The cell flexibility measures the extent that the cell utilizes the processes to acquire high throughput. Simulation program written in SLAM System was used to help measure cell flexibility. The proposed cell flexibility measure provides a prediction of the influence of the factors on throughput performance, and applies in case of comparison of existing system and a new system, changes in operation conditions of a cell, and comparison of rival machines. Therefore it can be used as decision making criteria for system justification.

  • PDF

Design and Evaluation of Transaction Processing System based on Main Memory Database (주기억장치 데이터베이스 기반 트랜잭션 처리 시스템의 설계 및 평가)

  • 심종익
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.367-377
    • /
    • 1999
  • Nowadays, the number of database applications which need fast transaction processing are increasing. One way to improve the performance of transaction processing is to reside the whole database in main memory As semiconductor memory becomes cheaper and chip densities increase, the research to improve transaction throughput rates of transaction processing system, using main memory databases, has begun In this thesis, how to implement a high performance transaction processing system based on main memory databases, new concurrency control scheme, recovery scheme and storage structure is presented. The objective of the proposed schemes is to improve the transaction processing system performance measured by transaction throughput and response times.

  • PDF

Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment (FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법)

  • Bae, Won-Geon;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.505-516
    • /
    • 2012
  • According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.

Aequorin Based Functional Assessment of the Melanin Concentrating Hormone Receptor by Intracellular Calcium Mobilization

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Melanin concentrating hormone is a neuropeptide highly expressed in the brain that regulates several physiological functions mediated by receptors in the G-protein coupled receptor family, especially plays an important role in the complex regulation of energy balance and body weight mediated by the melanin concentrating hormone receptor subtype 1 (MCH1). Compelling pharmacological evidence implicating MCH1 signaling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies as MCH1 antagonists may have potential therapeutic benefit in the treatment of obesity and metabolic syndrome. Although fluorescence-based calcium mobilization assay platform has been one of the most widely accepted tools for receptor research and drug discovery, fluorescence interference and shallow assay window limit their application in high throughput screening and have led to a growing interest in alternative, luminescence-based technologies. Herein, a luminescence-based functional assay system for the MCH1 receptor was developed and validated with the mitochondrial targeted aequorin. Aequorin based functional assay system for MCH1 presented excellent Z' factor (0.8983) and high signal-to-noise ratio (141.9). The nonpeptide MCH1 receptor antagonist, SNAP 7941 and GSK 803430, exhibited $IC_{50}$ values of 0.62 ${\pm}$ 0.11 and 12.29 ${\pm}$ 2.31 nM with excellent correlation coefficient. These results suggest that the aequorin based assay system for MCH1 is a strong alternative to the traditional GPCR related tools such as radioligand binding experiments and fluorescence functional determinations for the compound screening and receptor research.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.