The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C. (Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Dennmark) ;
  • Oliveira, Ana Paula (Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Dennmark) ;
  • Patil, Kiran Raosaheb (Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Dennmark) ;
  • Nielsen, Jens (Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Dennmark)
  • Published : 2005.10.31

Abstract

The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

Keywords

References

  1. Patil, K. R., M. Akesson, and J. Nielsen (2004) Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15: 64-69 https://doi.org/10.1016/j.copbio.2003.11.003
  2. Nielsen, J. (2001) Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263-283 https://doi.org/10.1007/s002530000511
  3. Stephanopoulos, G., A. Aristidou, and J. Nielsen, (1998) Metabolic Engineering. Academic Press, San Diego, USA.
  4. Bulter, T., J. R. Bernstein, and J. C. Liao (2003) A perspective of metabolic engineering strategies: Moving up the systems hierarchy. Biotechnol. Bioeng. 84: 815-821 https://doi.org/10.1002/bit.10845
  5. Nielsen, J. (2003) It is all about metabolic fluxes. J. Bacteriol. 185: 7031-7035 https://doi.org/10.1128/JB.185.24.7031-7035.2003
  6. Bailey, J. E., A. Sburlati, V. Hatzimanikatis, K. Lee, W. A. Renner, and P. S. Tsai (1996) Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng. 52: 109-121 https://doi.org/10.1002/(SICI)1097-0290(19961005)52:1<109::AID-BIT11>3.0.CO;2-J
  7. Martin, V. J., D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796-802 https://doi.org/10.1038/nbt833
  8. Farmer, W. R. and J. C. Liao (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18: 533-537 https://doi.org/10.1038/75398
  9. Ostergaard, S., L. Olsson, M. Johnston, and J. Nielsen (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-1286 https://doi.org/10.1038/82400
  10. Bailey, J. E. (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17: 616-618 https://doi.org/10.1038/10794
  11. Bro, C. and J. Nielsen (2004) Impact of 'ome' analyses on inverse metabolic engineering. Metab. Eng. 6: 204-211 https://doi.org/10.1016/j.ymben.2003.11.005
  12. Ihmels, J., R. Levy, and N. Barkai (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22: 86-92 https://doi.org/10.1038/nbt918
  13. Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold, and L. Hood (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929-934 https://doi.org/10.1126/science.292.5518.929
  14. Patil, K. R. and J. Nielsen (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA 102: 2685-2689 https://doi.org/10.1073/pnas.0406811102
  15. Price, N. D., J. A. Papin, C. H. Schilling, and B. O. Palsson (2003) Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21: 162-169 https://doi.org/10.1016/S0167-7799(03)00030-1
  16. Burgard, A. P., P. Pharkya, and C. D. Maranas (2003) OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84: 647-657 https://doi.org/10.1002/bit.10803
  17. Ideker, T., T. Galitski, and L. Hood (2001) A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2: 343-372 https://doi.org/10.1146/annurev.genom.2.1.343
  18. Nielsen, J. and L. Olsson (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: Moving towards systems biology. FEMS Yeast Res. 2: 175-181 https://doi.org/10.1111/j.1567-1364.2002.tb00083.x
  19. Weston, A. D. and L. Hood (2004) Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. J. Proteome Res. 3: 179-196 https://doi.org/10.1021/pr0499693
  20. Stephanopoulos, G., H. Alper, and J. Moxley (2004) Exploiting biological complexity for strain improvement through systems biology. Nat. Biotechnol. 22: 1261-1267 https://doi.org/10.1038/nbt1016
  21. Brent, R. (2004) A partnership between biology and engineering. Nat. Biotechnol. 22: 1211-1214 https://doi.org/10.1038/nbt1004-1211
  22. Hood, L. and R. M. Perlmutter (2004) The impact of systems approaches on biological problems in drug discovery. Nat. Biotechnol. 22: 1215-1217 https://doi.org/10.1038/nbt1004-1215
  23. Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
  24. Schena, M., R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis (1998) Microarrays: Biotechnology's discovery platform for functional genomics. Trends Biotechnol. 16: 301-306 https://doi.org/10.1016/S0167-7799(98)01219-0
  25. Lipshutz, R. J., S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart (1999) High density synthetic oligonucleotide arrays. Nat. Genetics 21: 20-24 https://doi.org/10.1038/4447
  26. Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte,Chakraburtty,K.J. Simon, M. Bard, and S. H. Friend (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109-126 https://doi.org/10.1016/S0092-8674(00)00015-5
  27. Lynch, M. D., R. T. Gill, and G. Stephanopoulos (2004) Mapping phenotypic landscapes using DNA micro-arrays. Metab. Eng. 6: 177-185 https://doi.org/10.1016/j.ymben.2004.01.002
  28. Stafford, D. E. and G. Stephanopoulos (2001) Metabolic engineering as an integrating platform for strain development. Curr. Opin. Microbiol. 4: 336-340 https://doi.org/10.1016/S1369-5274(00)00214-9
  29. Kao, C. M. (1999) Functional genomic technologies: Creating new paradigms for fundamental and applied biology. Biotechnol. Prog. 15: 304-311 https://doi.org/10.1021/bp990027q
  30. de Lichtenberg, U., L. J. Jensen, S. Brunak, and P. Bork (2005) Dynamic complex formation during the yeast cell cycle. Science 307: 724-727 https://doi.org/10.1126/science.1105103
  31. Laub, M. T., H. H. McAdams, T. Feldblyum, C. M. Fraser, and L. Shapiro (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290: 2144-2148 https://doi.org/10.1126/science.290.5499.2144
  32. Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher (1998) Comprehensive identification of cell cycle- regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9: 3273-3297
  33. DeRisi, J. L., V. R. Iyer, and P. O. Brown (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-686 https://doi.org/10.1126/science.278.5338.680
  34. Gill, R. T., S. Wildt, Y. T. Yang, S. Ziesman, and G. Stephanopoulos (2002) Genome-wide screening for trait conferring genes using DNA microarrays. Proc. Natl. Acad. Sci. USA 99: 7033-7038 https://doi.org/10.1073/pnas.102154799
  35. Gill, R. T. (2003) Enabling inverse metabolic engineering through genomics. Curr. Opin. Biotechnol. 14: 484-490 https://doi.org/10.1016/S0958-1669(03)00116-2
  36. Gonzalez, R., H. Tao, J. E. Purvis, S. W. York, K. T. Shanmugam, and L. O. Ingram (2003) Gene arraybased identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: Comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol. Prog. 19: 612-623 https://doi.org/10.1021/bp025658q
  37. Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao (2004) Reverse engineering of industrial pharmaceuticalproducing actinomycete strains using DNA microarrays. Metab. Eng. 6: 186-196 https://doi.org/10.1016/j.ymben.2003.12.001
  38. Wahlbom, C. F., R. R. Cordero Otero, W. H. van Zyl, B. Hahn-Hagerdal, and L. J. Jonsson (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69: 740-746 https://doi.org/10.1128/AEM.69.2.740-746.2003
  39. Askenazi, M., E. M. Driggers, D. A. Holtzman, T. C. Norman, S. Iverson, D. P. Zimmer, M. E. Boers, P. R. Blomquist, E. J. Martinez, A. W. Monreal, T. P. Feibelman, M. E. Mayorga, M. E. Maxon, K. Sykes, J. V. Tobin, E. Cordero, S. R. Salama, J. Trueheart, J. C. Royer, and K. T. Madden (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatinproducing fungal strains. Nat. Biotechnol. 21: 150-156 https://doi.org/10.1038/nbt781
  40. Oh, M. K. and J. C. Liao (2000) DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab. Eng. 2: 201-209 https://doi.org/10.1006/mben.2000.0149
  41. Sanford, K., P. Soucaille, G. Whited, and G. Chotani (2002) Genomics to fluxomics and physiomics - pathway engineering. Curr. Opin. Microbiol. 5: 318-322 https://doi.org/10.1016/S1369-5274(02)00318-1
  42. Daran-Lapujade, P., M. L. Jansen, J. M. Daran, W. van Gulik, J. H. de Winde, and J. T. Pronk (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J. Biol. Chem. 279: 9125-9138 https://doi.org/10.1074/jbc.M309578200
  43. Tummala, S. B., S. G. Junne, and E. T. Papoutsakis (2003) Antisense RNA downregulation of coenzyme A transferase combined with alcohol aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J. Bacteriol. 185: 3644-3653 https://doi.org/10.1128/JB.185.12.3644-3653.2003
  44. Yoon, S. H., M. J. Han, S. Y. Lee, K. J. Jeong, and J. S. Yoo (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 81: 753-767 https://doi.org/10.1002/bit.10626
  45. Griffin, T. J., S. P. Gygi, T. Ideker, B. Rist, J. Eng, L. Hood, and R. Aebersold (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1: 323-333 https://doi.org/10.1074/mcp.M200001-MCP200
  46. Schena, M., D. Shalon, R. W. Davis, and P. O. Brown (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470 https://doi.org/10.1126/science.270.5235.467
  47. Harrington, C. A., C. Rosenow, and J. Retief (2000) Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3: 285-291 https://doi.org/10.1016/S1369-5274(00)00091-6
  48. Lockhart, D. J. and E. A. Winzeler (2000) Genomics, gene expression and DNA arrays. Nature 405: 827-836 https://doi.org/10.1038/35015701
  49. Knudsen, S. (2004) Guide to Analysis of DNA Microarray Data. John Wiley & Sons, Inc., Hoboken, NJ, USA
  50. Parada, G. and F. Acevedo (1983) On the relation of temperature and RNA content to the specific growth rate in Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 2785-2788 https://doi.org/10.1002/bit.260251120
  51. Waldron, C. and F. Lacroute (1975) Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122: 855-865
  52. Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel- Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11: 4241-4257 https://doi.org/10.1091/mbc.11.12.4241
  53. Hayes, A., N. Zhang, J. Wu, P. R. Butler, N. C. Hauser, J. D. Hoheisel, F. L. Lim, A. D. Sharrocks, and S. G. Oliver (2002) Hybridization array technology coupled with chemostat culture: Tools to interrogate gene expression in Saccharomyces cerevisiae. Methods 26: 281-290 https://doi.org/10.1016/S1046-2023(02)00032-4
  54. Leung, Y. F. and D. Cavalieri (2003) Fundamentals of cDNA microarray data analysis. Trends Genet. 19: 649-659 https://doi.org/10.1016/j.tig.2003.09.015
  55. Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29: 365-371 https://doi.org/10.1038/ng1201-365
  56. Quackenbush, J. (2001) Computational analysis of microarray data. Nat. Rev. Genetics 2: 418-427 https://doi.org/10.1038/35076576
  57. Schadt, E. E., C. Li, C. Su, and W. H. Wong (2000) Analyzing high-density oligonucleotide gene expression array data. J. Cell. Biochem. 80: 192-202 https://doi.org/10.1002/1097-4644(20010201)80:2<192::AID-JCB50>3.0.CO;2-W
  58. Workman, C., L. Jensen, H. Jarmer, R. Berka, L. Gautier, H. Nielser, H. H. Saxild, C. Nielsen, S. Brunak, and S. Knudsen (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biology 3: research0048
  59. Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, Scherf, U.and T. P. Speed (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264 https://doi.org/10.1093/biostatistics/4.2.249
  60. Li, C. and W. H. Wong (2001) Model-based analysis of oligonucleotide arrays: Model validation, design issues and standard error application. Genome Biology 2: research0032
  61. Li, C. and W. H. Wong (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98: 31-36 https://doi.org/10.1073/pnas.011404098
  62. Zhou, Y. and R. Abagyan (2002) Match-only integral distribution (MOID) algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics 3: 3
  63. Naef, F., D. A. Lim, N. Patil, and M. Magnasco (2002) DNA hybridization to mismatched templates: A chip study. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 65: 040902
  64. Chudin, E., R. Walker, A. Kosaka, S. X. Wu, D. Rabert, T. K. Chang, and D. E. Kreder (2002) Assessment of the relationship between signal intensities and transcript concentration for Affymetrix GeneChip arrays. Genome Biol. 3: Research0005
  65. Ideker, T., V. Thorsson, A. F. Siegel, and L. E. Hood (2000) Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J. Comput. Biol. 7: 805-817 https://doi.org/10.1089/10665270050514945
  66. Storey, J. D. and R. Tibshirani (2003) Statistical significance for genome wide studies. Proc. Natl. Acad. Sci. USA 100: 9440-9445 https://doi.org/10.1073/pnas.1530509100
  67. Taguchi, Y. H. and Y. Oono (2005) Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21: 730-740 https://doi.org/10.1093/bioinformatics/bti067
  68. Yeung, K. Y. and W. L. Ruzzo (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17: 763-774 https://doi.org/10.1093/bioinformatics/17.9.763
  69. Alter, O., P. O. Brown, and D. Botstein (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97: 10101-10106 https://doi.org/10.1073/pnas.97.18.10101
  70. Sherlock, G. (2000) Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12: 201-205 https://doi.org/10.1016/S0952-7915(99)00074-6
  71. Valafar, F. (2002) Pattern recognition techniques in microarray data analysis: A survey. Ann. NY Acad. Sci. 980: 41-64 https://doi.org/10.1111/j.1749-6632.2002.tb04888.x
  72. Dharmadi, Y. and R. Gonzalez (2004) DNA microarrays: Experimental issues, data analysis, and application to bacterial systems. Biotechnol. Prog. 20: 1309-1324 https://doi.org/10.1021/bp0400240
  73. Grotkjaer, T. and J. Nielsen (2004) Enhancing yeast transcription analysis through integration of heterogeneous data. Curr. Genomics 5: 673-686 https://doi.org/10.2174/1389202043348472
  74. Gibbons, F. D. and F. P. Roth (2002) Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12: 1574-1581 https://doi.org/10.1101/gr.397002
  75. Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, and T. R. Golub (1999) Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96: 2907-2912 https://doi.org/10.1073/pnas.96.6.2907
  76. Cherepinsky, V., J. Feng, M. Rejali, and B. Mishra (2003) Shrinkage-based similarity metric for cluster analysis of microarray data. Proc. Natl. Acad. Sci. USA 100: 9668-9673 https://doi.org/10.1073/pnas.1633770100
  77. Heyer, L. J., S. Kruglyak, and S. Yooseph (1999) Exploring expression data: Identification and analysis of coexpressed genes. Genome Res. 9: 1106-1115 https://doi.org/10.1101/gr.9.11.1106
  78. Hastie, T., R. Tibshirani, and J. Friedman, (2001) The Elements of Statistical Learning - Data Mining, Inference, and Prediction. Springer-Verlag, New York, NY, USA.
  79. MacKay, D. J. C. (2003) Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge, UK.
  80. Blatt, M., S. Wiseman, and E. Domany (1996) Superparamagnetic clustering of data. Phys. Rev. Lett. 76: 3251-3254 https://doi.org/10.1103/PhysRevLett.76.3251
  81. Kaminski, N. and N. Friedman (2002) Practical approaches to analyzing results of microarray experiments. Am. J. Respir. Cell Mol. Biol. 27: 125-132 https://doi.org/10.1165/ajrcmb.27.2.f247
  82. Kerr, M. K. and G. A. Churchill (2001) Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. USA 98: 8961-8965 https://doi.org/10.1073/pnas.161273698
  83. McShane, L. M., M. D. Radmacher, B. Freidlin, R. Yu, M. C. Li, and R. Simon (2002) Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18: 1462-1469 https://doi.org/10.1093/bioinformatics/18.11.1462
  84. Zhang, K. and H. Zhao (2000) Assessing reliability of gene clusters from gene expression data. Funct. Integr. Genomics 1: 156-173 https://doi.org/10.1007/s101420000019
  85. Zhu, J. and M. Q. Zhang (2000) Cluster, function and promoter: Analysis of yeast expression array. Pac. Symp. Biocomput. 479-490
  86. Wei, G. H., D. P. Liu, and C. C. Liang (2004) Charting gene regulatory networks: Strategies, challenges and perspectives. Biochem. J. 381: 1-12 https://doi.org/10.1042/BJ20040311
  87. Pilpel, Y., P. Sudarsanam, and G. M. Church (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29: 153-159 https://doi.org/10.1038/ng724
  88. Banerjee, N. and M. Q. Zhang (2002) Functional genomics as applied to mapping transcription regulatory networks. Curr. Opin. Microbiol. 5: 313-317 https://doi.org/10.1016/S1369-5274(02)00322-3
  89. Brown, M. P., W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, Jr., and D. Haussler (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 97: 262-267 https://doi.org/10.1073/pnas.97.1.262
  90. Miki, R., K. Kadota, H. Bono, Y. Mizuno, Y. Tomaru, P. Carninci, M. Itoh, K. Shibata, J. Kawai, H. Konno, S. Watanabe, K. Sato, Y. Tokusumi, N. Kikuchi, Y. Ishii, Y. Hamaguchi, I. Nishizuka, H. Goto,H. Nitanda, S. Satomi, A. Yoshiki, M. Kusakabe, J. L. DeRisi, M. B. Eisen, V. R. Iyer, P.O. Brown, M. Muramatsu, H. Shimada, Y. Okazaki, and Y. Hayashizaki (2001) Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays. Proc. Natl. Acad. Sci. 98: 2199-2204蠋Āن㒁匈ĀĀĀ꼀ḁᤐ돀䢴?⨀塨?⨀?⨀돐?잖⨀?잖⨀—?⨀줏덐〔?⨀젏ꠏTȌ耀᠞ƵŒऀ|B. Farnworth and P. A. Dolhan, Textile Res. J., 55, 627 (1985)᠀쀎?⨀੧३㐀㠧?⨀䍧३ऀ?⨀䵧३؀砚?⨀栆?⨀쐂?⨀฀礀考㎺Ȁ㎺Ȁ̀￿￿￿￿㠳?⨀Ā!㪤Āሀ฀考㎺Ȁ㎺Ȁ̀￿￿ĀĀ쐂?⨀ᑠ꡿Āက₪舀﾿缀舀?⨀ https://doi.org/10.1073/pnas.041605498
  91. Bro, C., B. Regenberg, and J. Nielsen (2004) Genomewide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism. Biotechnol. Bioeng. 85: 269-276 https://doi.org/10.1002/bit.10899
  92. Grosu, P., J. P. Townsend, D. L. Hartl, and D. Cavalieri (2002) Pathway Processor: A tool for integrating wholegenome expression results into metabolic networks. Genome Res. 12: 1121-1126 https://doi.org/10.1101/gr.226602
  93. Zien, A., R. Kuffner, R. Zimmer, and T. Lengauer (2000) Analysis of gene expression data with pathway scores. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8: 407-417
  94. Pavlidis, P., D. P. Lewis, and W. S. Noble (2002) Exploring gene expression data with class scores. Pac. Symp. Biocomput. 474-485
  95. Nakao, M., H. Bono, S. Kawashima, T. Kamiya, K. Sato, S. Goto, and M. Kanehisa (1999) Genome-scale gene expression analysis and pathway reconstruction in KEGG. Genome Inform. Ser. Workshop Genome Inform. 10: 94-103
  96. Mateos, A., J. Dopazo, R. Jansen, Y. Tu, M. Gerstein, and G. Stolovitzky (2002) Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons. Genome Res. 12: 1703-1715 https://doi.org/10.1101/gr.192502
  97. Breitling, R., A. Amtmann, and P. Herzyk (2004) Graphbased iterative Group Analysis enhances microarray interpretation. BMC Bioinformatics. 5: 100 https://doi.org/10.1186/1471-2105-5-100
  98. Jansen, R., D. Greenbaum, and M. Gerstein (2002) Relating whole-genome expression data with protein-protein interactions. Genome Res. 12: 37-46 https://doi.org/10.1101/gr.205602
  99. Schuster, S., D. A. Fell, and T. Dandekar (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18: 326-332 https://doi.org/10.1038/73786
  100. Stelling, J., S. Klamt, K. Bettenbrock, S. Schuster, and E. D. Gilles (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190-193 https://doi.org/10.1038/nature01166
  101. Cakir, T., B. Kirdar, and K. O. Ulgen (2004) Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol. Bioeng. 86: 251-260 https://doi.org/10.1002/bit.20020
  102. Pandey, R., R. K. Guru, and D. W. Mount (2004) Pathway miner: Extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data. Bioinformatics 20: 2156-2158 https://doi.org/10.1093/bioinformatics/bth215
  103. Jeong, H., B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi (2000) The large-scale organization of metabolic networks. Nature 407: 651-654 https://doi.org/10.1038/35036627
  104. Fell, D. A. and A. Wagner (2000) The small world of metabolism. Nat. Biotechnol. 18: 1121-1122 https://doi.org/10.1038/81025
  105. Ideker, T., O. Ozier, B. Schwikowski, and A. F. Siegel (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 S233-S240 https://doi.org/10.1093/bioinformatics/18.suppl_1.S233
  106. Majewski, R. A. and M. M. Domach (1990) Simple constrained- optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35: 732-738 https://doi.org/10.1002/bit.260350711
  107. Burgard, A. P. and C. D. Maranas (2003) Optimizationbased framework for inferring and testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82: 670-677 https://doi.org/10.1002/bit.10617
  108. Burgard, A. P., E. V. Nikolaev, C. H. Schilling, and C. D. Maranas (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14: 301-312 https://doi.org/10.1101/gr.1926504
  109. Pharkya, P., A. P. Burgard, and C. D. Maranas (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84: 887-899 https://doi.org/10.1002/bit.10857
  110. Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99: 15112-15117 https://doi.org/10.1073/pnas.232349399
  111. Akesson, M., J. Forster, and J. Nielsen (2004) Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6: 285-293 https://doi.org/10.1016/j.ymben.2003.12.002
  112. Covert, M. W., E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429: 92-96 https://doi.org/10.1038/nature02456
  113. Covert, M. W. and B. O. Palsson (2003) Constraintsbased models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221: 309-325 https://doi.org/10.1006/jtbi.2003.3071
  114. Covert, M. W., C. H. Schilling, and B. Palsson (2001) Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213: 73-88 https://doi.org/10.1006/jtbi.2001.2405