• Title/Summary/Keyword: high-school biology

Search Result 962, Processing Time 0.029 seconds

Clinical significance of APOB inactivation in hepatocellular carcinoma

  • Lee, Gena;Jeong, Yun Seong;Kim, Do Won;Kwak, Min Jun;Koh, Jiwon;Joo, Eun Wook;Lee, Ju-Seog;Kah, Susie;Sim, Yeong-Eun;Yim, Sun Young
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.7.1-7.12
    • /
    • 2018
  • Recent findings from The Cancer Genome Atlas project have provided a comprehensive map of genomic alterations that occur in hepatocellular carcinoma (HCC), including unexpected mutations in apolipoprotein B (APOB). We aimed to determine the clinical significance of this non-oncogenetic mutation in HCC. An Apob gene signature was derived from genes that differed between control mice and mice treated with siRNA specific for Apob (1.5-fold difference; P < 0.005). Human gene expression data were collected from four independent HCC cohorts (n = 941). A prediction model was constructed using Bayesian compound covariate prediction, and the robustness of the APOB gene signature was validated in HCC cohorts. The correlation of the APOB signature with previously validated gene signatures was performed, and network analysis was conducted using ingenuity pathway analysis. APOB inactivation was associated with poor prognosis when the APOB gene signature was applied in all human HCC cohorts. Poor prognosis with APOB inactivation was consistently observed through cross-validation with previously reported gene signatures (NCIP A, HS, high-recurrence SNUR, and high RS subtypes). Knowledge-based gene network analysis using genes that differed between low-APOB and high-APOB groups in all four cohorts revealed that low-APOB activity was associated with upregulation of oncogenic and metastatic regulators, such as HGF, MTIF, ERBB2, FOXM1, and CD44, and inhibition of tumor suppressors, such as TP53 and PTEN. In conclusion, APOB inactivation is associated with poor outcome in patients with HCC, and APOB may play a role in regulating multiple genes involved in HCC development.

Inhibition of mouse SP2/0 myeloma cell growth by the B7-H4 protein vaccine

  • Mu, Nan;Liu, Nannan;Hao, Qiang;Xu, Yujin;Li, Jialin;Li, Weina;Wu, Shouzhen;Zhang, Cun;Su, Haichuan
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.399-404
    • /
    • 2014
  • B7-H4 is a member of B7 family of co-inhibitory molecules and B7-H4 protein is found to be overexpressed in many human cancers and which is usually associated with poor survival. In this study, we developed a therapeutic vaccine made from a fusion protein composed of a tetanus toxoid (TT) T-helper cell epitope and human B7-H4IgV domain (TT-rhB7-H4IgV). We investigated the anti-tumor effect of the TT-rhB7-H4IgV vaccine in BALB/c mice and SP2/0 myeloma growth was significantly suppressed in mice. The TT-rhB7-H4IgV vaccine induced high-titer specific antibodies in mice. Further, the antibodies induced by TT-rhB7-H4IgV vaccine were capable of depleting SP2/0 cells through complement-dependent cytotoxicity (CDC) in vitro. On the other hand, the poor cellular immune response was irrelevant to the therapeutic efficacy. These results indicate that the recombinant TT-rhB7-H4IgV vaccine might be a useful candidate of immunotherapy for the treatment of some tumors associated with abnormal expression of B7-H4.

The Effects of 'Online Biology Learning Using E-Learning System' on Elementary School Students' Science-Related Attitudes (e학습터 플랫폼을 활용한 원격 생물 학습이 초등학생들의 과학 관련 태도에 미치는 영향)

  • Park, Hyoung-Min;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • This study analyzed the effects of 'online biology learning using E-learning system' on elementary school students' science-related attitudes. Samples of the study were composed of 95 sixth-grade students of N elementary school in Seoul, Korea. The learning was conducted for 11 times over a month. The main results of this study are as follows. First, for the paired t-test, a statistically significant difference between the pre and post scores of science-related attitudes was found. After conducting the online biology learning science related attitudes scores of students generally declined. "The boredom caused by simply watching online biology contents" is the decisive cause of the decline in science-related attitude scores analyzed through interviews. Second, in ANCOVA, according to 'levels of meta-cognition'. there was no statistically significant difference in scores of science-related attitudes. but, there was statistically significant difference in science-related attitudes according to 'adoption of scientific attitudes'. Students of high meta-cognition type showed a greater decline in scores than students of low meta-cognition type. Based on the results of this study, implications for research of online biology education and elementary science education are discussed.

Effects of Myxococcus fulvus KYC4048 Metabolites on Breast Cancer Cell Death

  • Lee, Chayul;Park, Sanghyun;Ayush, Ikhbayar;Cho, Kyungyun;Kim, Sung Soo;Kang, Insug;Choe, Wonchae;Kim, Yoon-Seong;Yoon, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.765-775
    • /
    • 2018
  • Using MCF7 breast cancer cells, we tested the anticancer activity of metabolites from 130 strains of myxobacteria newly isolated in South Korea. Of these, three strains whose metabolites had high anticancer activity and low cell toxicity were selected and identified by their fruiting body morphology, cell morphology, and 16S rRNA sequence. Strains KYC4030 and KYC4048 were determined to be Myxococcus fulvus, whereas strain KYC4081 was identified as Corallococcus coralloides. We found that metabolites of M. fulvus KYC4048 demonstrated no toxicity in normal cells but specifically induced cancer cell death by suppressing the expression of WNT2B. This discovery highlights the value of assessing the metabolic and biomedical potential of myxobacteria, even those that are already known but were isolated from new areas, and the possible use of metabolites from M. fulvus KYC4048 in cancer treatment.

Screening and Purification of a Novel Transaminase Catalyzing the Transamination of Aryl ${\beta}-Amino$ Acid from Mesorhizobium sp. LUK

  • Kim, Ju-Han;Kyung, Do-Hyun;Yun, Hyung-Don;Cho, Byung-Kwan;Kim, Byung-Gee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1832-1836
    • /
    • 2006
  • Mesorhizobium sp. LUK, which utilizes 3-amino-3-phenylpropionic acid as the sole source of nitrogen with high enantioselectivity (E(S)>100), was isolated using enrichment culture. The enzyme involved in the utilization of (S)-3-amino-3-phenylpropionic acid was confirmed to be a transaminase and was purified by 235-folds with a specific activity of 0.72 U/mg. The molecular weight of the purified protein was ca. 47 kDa and the active enzyme was determined as a dimer on gel filtration chromatography. The N-terminal sequence was obtained from the purified protein. Spontaneous decarboxylation of produced ${\beta}-keto$ acids was observed during the chiral resolution of 3-amino-3-phenylpropionic acid.

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

  • Han, Jin-Hee;Li, Jian;Wang, Bo;Lee, Seong-Kyun;Nyunt, Myat Htut;Na, Sunghun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.403-411
    • /
    • 2015
  • Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (>326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

Isolation and characterization of LHT-type plant amino acid transporter gene from Panax ginseng Meyer

  • Zhang, Ru;Zhu, Jie;Cao, Hong-Zhe;Xie, Xiao-Lei;Huang, Jing-Jia;Chen, Xiang-Hui;Luo, Zhi-Yong
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.361-370
    • /
    • 2013
  • A lysine histidine transporter (LHT) cDNA was isolated and characterized from the roots of Panax ginseng, designated PgLHT. The cDNA is 1,865 bp with an open reading frame that codes for a protein with 449 amino acids and a calculated molecular mass of 50.6 kDa with a predicted isoelectric point of 8.87. Hydropathy analysis shows that PgLHT is an integral membrane protein with 9 putative membrane-spanning domains. Multiple sequence alignments show that PgLHT shares a high homology with other plant LHTs. The expression profile of the gene was investigated by real-time quantitative polymerase chain reaction during various chemical treatments. PgLHT was up-regulated in the presence of abscisic acid, salicylic acid, methyl jasmonate, NaCl, and amino acids. To further explore the function of PgLHT gene, full-length cDNA of PgLHT was introduced into P. ginseng by Agrobacterium rhizogenes A4. The overexpression of PgLHT in the hairy roots led to an obviously increase of biomass compared to the controls, and after addition of the amino acids, the overexpressed-PgLHT hairy roots grew more rapidly than untreated controls during early stage of the culture cycle. The results suggested that the PgLHT isolated from ginseng might have role in the environmental stresses and growth response.

Characterization and Expression Profile Analysis of a New cDNA Encoding Taxadiene Synthase from Taxus media

  • Kai, Guoyin;Zhao, Lingxia;Zhang, Lei;Li, Zhugang;Guo, Binhui;Zhao, Dongli;Sun, Xiaofen;Miao, Zhiqi;Tang, Kexuan
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.668-675
    • /
    • 2005
  • A full-length cDNA encoding taxadiene synthase (designated as TmTXS), which catalyzes the first committed step in the Taxol biosynthetic pathway, was isolated from young leaves of Taxus media by rapid amplification of cDNA ends (RACE). The full-length cDNA of TmTXS had a 2586 bp open reading frame (ORF) encoding a protein of 862 amino acid residues. The deduced protein had isoelectric point (pI) of 5.32 and a calculated molecular weight of about 98 kDa, similar to previously cloned diterpene cyclases from other Taxus species such as T. brevifolia and T. chinenisis. Sequence comparison analysis showed that TmTXS had high similarity with other members of terpene synthase family of plant origin. Tissue expression pattern analysis revealed that TmTXS expressed strongly in leaves, weak in stems and no expression could be detected in fruits. This is the first report on the mRNA expression profile of genes encoding key enzymes involved in Taxol biosynthetic pathway in different tissues of Taxus plants. Phylogenetic tree analysis showed that TmTXS had closest relationship with taxadiene synthase from T. baccata followed by those from T. chinenisis and T. brevifolia. Expression profiles revealed by RT-PCR under different chemical elicitor treatments such as methyl jasmonate (MJ), silver nitrate (SN) and ammonium ceric sulphate (ACS) were also compared for the first time, and the results revealed that expression of TmTXS was all induced by the tested three treatments and the induction effect by MJ was the strongest, implying that TmTXS was high elicitor responsive.

Development and Application of the Paper Model of Protein Synthesis Process in High School Biology (단백질 합성 과정 종이 모형 개발과 고등학교 생물 수업에서의 활용)

  • Byun, Sun-Young;Shim, Kew-Cheol
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.268-278
    • /
    • 2010
  • The purpose of this study was to develop the paper model of protein synthesis process in order for students to learn more effectively the protein synthesis, and to examine learning effects of instruction using it in high school biology. For this study, 117 students of 12th grade were sampled from a high school in Daejeon metropolitan city. The students were divided into two groups; the control group(n=58) were taught the protein synthesis by explanation-based traditional teaching method, and the experimental group(=59) were taught them by using protein synthesis model. Instruction using the model of protein synthesis process was more effective in improving the students' academic achievements and motivating interests in their learning than the traditional intruction. The class using the models can be another effective teaching method to teach students abstract and complicated concepts like protein synthesis process.

  • PDF

Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses

  • Kim, Hyun-Soo;Fernandes, Gary;Lee, Chang-Woo
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.654-662
    • /
    • 2016
  • Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.