Browse > Article
http://dx.doi.org/10.1038/s12276-018-0174-2

Clinical significance of APOB inactivation in hepatocellular carcinoma  

Lee, Gena (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
Jeong, Yun Seong (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
Kim, Do Won (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
Kwak, Min Jun (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
Koh, Jiwon (Department of Pathology, Seoul National University College of Medicine)
Joo, Eun Wook (Department of Gynecology, School of Medicine, Kyung Hee University)
Lee, Ju-Seog (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
Kah, Susie (Department of Internal Medicine, School of Medicine, Kyung Hee University)
Sim, Yeong-Eun (Department of Internal Medicine, School of Medicine, Kyung Hee University)
Yim, Sun Young (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
Publication Information
Experimental and Molecular Medicine / v.50, no.11, 2018 , pp. 7.1-7.12 More about this Journal
Abstract
Recent findings from The Cancer Genome Atlas project have provided a comprehensive map of genomic alterations that occur in hepatocellular carcinoma (HCC), including unexpected mutations in apolipoprotein B (APOB). We aimed to determine the clinical significance of this non-oncogenetic mutation in HCC. An Apob gene signature was derived from genes that differed between control mice and mice treated with siRNA specific for Apob (1.5-fold difference; P < 0.005). Human gene expression data were collected from four independent HCC cohorts (n = 941). A prediction model was constructed using Bayesian compound covariate prediction, and the robustness of the APOB gene signature was validated in HCC cohorts. The correlation of the APOB signature with previously validated gene signatures was performed, and network analysis was conducted using ingenuity pathway analysis. APOB inactivation was associated with poor prognosis when the APOB gene signature was applied in all human HCC cohorts. Poor prognosis with APOB inactivation was consistently observed through cross-validation with previously reported gene signatures (NCIP A, HS, high-recurrence SNUR, and high RS subtypes). Knowledge-based gene network analysis using genes that differed between low-APOB and high-APOB groups in all four cohorts revealed that low-APOB activity was associated with upregulation of oncogenic and metastatic regulators, such as HGF, MTIF, ERBB2, FOXM1, and CD44, and inhibition of tumor suppressors, such as TP53 and PTEN. In conclusion, APOB inactivation is associated with poor outcome in patients with HCC, and APOB may play a role in regulating multiple genes involved in HCC development.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Watanabe, S., Horie, Y. & Suzuki, A. Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol. Res. 33, 161-166 (2005).   DOI
2 Wang, L. et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol. Res. 37, 389-396 (2007).   DOI
3 Chin, L. & Gray, J. W. Translating insights from the cancer genome into clinical practice. Nature 452, 553-563 (2008).   DOI
4 Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87-108 (2015).   DOI
5 Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating. Nat. Rev. Drug Discov. 5, 835-844 (2006).   DOI
6 Whittaker, S., Marais, R. & Zhu, A. X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29, 4989-5005 (2010).   DOI
7 Wu, S. K. et al. Expression of PTEN, PPM1A and P-Smad2 in hepatocellular carcinomas and adjacent. World J. Gastroenterol. 13, 4554-4559 (2007).   DOI
8 Qiu, W. et al. Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology 48, 1799-1809 (2008).   DOI
9 Wang, F. B., Zhu, C. L., Liu, X. & Gao, G. S. HBV inhibits apoB production via the suppression of MTP expression. Lipids Health Dis. 10, 207 (2011).   DOI
10 Forner, A., Llovet, J. M. & Bruix, J. Hepatocellular carcinoma. Lancet 379, 1245-1255 (2012).   DOI
11 Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71-96 (2008).   DOI
12 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7-30 (2017).   DOI
13 El-Serag, H. B. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 127, S27-S34 (2004).   DOI
14 Shaw, J. J. & Shah, S. A. Rising incidence and demographics of hepatocellular carcinoma in the USA: what does it mean? Expert Rev. Gastroenterol. Hepatol. 5, 365-370 (2011).   DOI
15 Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56-66 (2017).   DOI
16 Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378-390 (2008).   DOI
17 Totoki, Y. et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 43, 464-469 (2011).   DOI
18 Guichard, C. et al. Integrated analysis of somatic mutations and focal copynumber changes identifies. Nat. Genet. 44, 694-698 (2012).   DOI
19 Huang, J. et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat. Genet. 44, 1117-1121 (2012).   DOI
20 Cleary, S. P. et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology 58, 1693-1702 (2013).   DOI
21 Fujimoto, A. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 48, 500-509 (2016).   DOI
22 Schonfeld, G. Familial hypobetalipoproteinemia: a review. J. Lipid Res. 44, 878-883 (2003).   DOI
23 Lee, J. S. The mutational landscape of hepatocellular carcinoma. Clin. Mol. Hepatol. 21, 220-229 (2015).   DOI
24 Lee, J. S. Exploring cancer genomic data from the cancer genome atlas project. BMB Rep. 49, 607-611 (2016).   DOI
25 Consortium, T. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327-1341 (2017).   DOI
26 Lonardo, A., Tarugi, P., Ballarini, G. & Bagni, A. Familial heterozygous hypobetalipoproteinemia, extrahepatic primary malignancy. Dig. Dis. Sci. 43, 2489-2492 (1998).   DOI
27 Lee, J. S. et al. Application of comparative functional genomics to identify bestfit mouse models to study human cancer. Nat. Genet. 36, 1306-1311 (2004).   DOI
28 Lee, J. S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat. Med. 12, 410-416 (2006).   DOI
29 Park, Y. Y. et al. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 63, 159-172 (2016).   DOI
30 Tadin-Strapps, M. et al. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model. J. Lipid Res. 52, 1084-1097 (2011).   DOI
31 Thorgeirsson, S. S., Lee, J. S. & Grisham, J. W. Functional genomics of hepatocellular carcinoma. Hepatology 43, S145-S150 (2006).   DOI
32 Dong, B. et al. Activating CAR and beta-catenin induces uncontrolled liver growth and. Nat. Commun. 6, 5944 (2015).   DOI
33 Lim, H. Y. et al. Prediction of disease-free survival in hepatocellular carcinoma by gene. Ann. Surg. Oncol. 20, 3747-3753 (2013).   DOI
34 Roessler, S. et al. A unique metastasis gene signature enables prediction of tumor relapse in. Cancer Res. 70, 10202-10212 (2010).   DOI
35 Roessler, S. et al. Integrative genomic identification of genes on 8p associated with hepatocellular. Gastroenterology 142, 957-966 (2012).   DOI
36 Lee, J. S. et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40, 667-676 (2004).   DOI
37 Woo, H. G. et al. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma. Clin. Cancer Res. 14, 2056-2064 (2008).   DOI
38 Kim, S. M. et al. Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma. Hepatology 55, 1443-1452 (2012).   DOI
39 Kim, J. H. et al. Genomic predictors for recurrence patterns of hepatocellular carcinoma: model derivation and validation. PLoS Med. 11, e1001770 (2014).   DOI
40 Sohn, B. H. et al. Inactivation of Hippo pathway is significantly associated with poor prognosis in hepatocellular carcinoma. Clin. Cancer Res. 22, 1256-1264 (2016).   DOI
41 Oh, S. C. et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat. Commun. 9, 1777 (2018).   DOI
42 Simon, R. et al. Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 3, 11-17 (2007).
43 Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868 (1998).   DOI
44 Cefalu, A. B. et al. A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia. Arterioscler. Thromb. Vasc. Biol. 33, 2021-2025 (2013).   DOI
45 Kaposi-Novak, P. et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J. Clin. Invest. 116, 1582-1595 (2006).   DOI
46 Ahn, S. M. et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 60, 1972-1982 (2014).   DOI
47 Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on. Nat. Genet. 44, 760-764 (2012).   DOI
48 Bonnefont-Rousselot, D. et al. Cryptogenic cirrhosis in a patient with familial hypocholesterolemia due to a new truncated form of apolipoprotein B. Eur. J. Gastroenterol. Hepatol. 21, 104-108 (2009).   DOI
49 Welty, F. K. Hypobetalipoproteinemia and abetalipoproteinemia. Curr. Opin. Lipidol. 25, 161-168 (2014).   DOI
50 Tarugi, P. & Lonardo, A. Heterozygous familial hypobetalipoproteinemia associated with fatty liver. Am. J. Gastroenterol. 92, 1400-1402 (1997).
51 Lonardo, A., Tarugi, P., Ballarini, G. & Bagni, A. Familial heterozygous hypobetalipoproteinemia, extrahepatic primary malignancy, and hepatocellular carcinoma. Dig. Dis. Sci. 43, 2489-2492 (1998).   DOI
52 Hegele, R. A. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10, 109-121 (2009).
53 Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl. Acad. Sci. USA 101, 2082-2087 (2004).   DOI