• 제목/요약/키워드: high-power step-up converter

검색결과 169건 처리시간 0.023초

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

Comparison of Conventional DC-DC Converter and a Family of Diode-Assisted DC-DC Converter in Renewable Energy Applications

  • Zhang, Yan;Liu, Jinjun;Ma, Xiaolong;Feng, Junjie
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.203-216
    • /
    • 2014
  • In the conventional dc-dc converter, a pair of additional diode and the adjacent passive component capacitor/inductor can be added to the circuit with an X-shape connection, which generates a family of new topologies. The novel circuits, also called diode-assisted dc-dc converter, enhance the voltage boost/buck capability and have a great potential for high step-up/step-down power conversions. This paper mainly investigates and compares conventional dc-dc converter and diode-assisted dc-dc converter in wide range power conversion from the aspects of silicon devices, passive components requirements, electro-magnetic interference (EMI) and efficiency. Then, a comprehensive comparison example of a high step-up power conversion system was carried out. The two kinds of boost dc-dc converters operate under the same operation conditions. Mathematical analysis and experiment results verify that diode-assisted dc-dc converters are very promising for simultaneous high efficiency and high step-up/step-down power conversion in distributed power supply systems.

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • Kim, Do-Hyun;Jang, Jong-Ho;Park, Joung-Hu;Kim, Jung-Won
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.766-778
    • /
    • 2013
  • The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

A High-Efficiency High-Power Step-Up Converter with Low Ripple Content

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.708-712
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output (PI SO) dual inductor-fed push-pull converter for high-power step­up applications is proposed. This converter is operated at a constant duty cycle and employs an auxiliary circuit to control the output voltage with a phase-shift between the two modules. It features a voltage conversion characteristic which is linear to changes in the control input, and high step-up ratio with a greatly reduced switch turn-off stress resulting in a significant increase in the converter efficiency. It also shows a low ripple content and low root-mean-square (RMS) current in the output capacitor. The operational principle is analyzed and a comparative analysis with the conventional pulse-width-modulated (PWM) PISO dual inductor-fed push-pull converter is presented. A 50kHz, 800W, 350Vdc prototype with an input of 20-32Vdc has also been constructed to validate the proposed converter. The proposed converter compares favorably with the conventional counterpart and is considered well suited to high-power step-up applications.

  • PDF

A High-Power Step-up Converter with High Efficiency and Fast Control-to-Output Dynamics

  • Kang, Jeong-il;Roh, Chung-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.78-87
    • /
    • 2001
  • A new high-power step-up based on the two-module parallel-input (PISO) modular dual inductor-fed push-pull converter is proposed. The proposed converter is operated at a constant duty cycle and employs and auxiliary circuit to control the output voltage with a phase-shift between two modules. It shows a high efficiency due to the greatly reduced switch turn-off stress. It also shows a high and linear voltage conversion ratio, low current stress in the output capacitor, and fast control-to-output dynamics. The operation principles and the mathematical models of the proposed converter are presented. Features of the proposed converter are discussed in comparison with the two-module PISO modular dual inductor-fed push-pull converter. Also, experimental results from a 50kHz, 800W, 350 Vdc prototype with an input voltage range of 20-32 Vdc are provided to confirm the validity of the proposed converter. The new converter compares favorably with the conventional counterpart, and is considered well siuted to high-power step-up applications.

  • PDF

Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1438-1445
    • /
    • 2015
  • A new DC-DC power converter is researched for renewable energy and battery hybrid power supplies systems in this paper. At the charging mode, a renewable energy source provides energy to charge a battery via the proposed converter. The operating principle of the proposed converter is the same as the conventional DC-DC buck converter. At the discharging mode, the battery releases its energy to the DC bus via the proposed converter. The proposed converter is a non-isolated high step-up DC-DC converter. The coupled-inductor technique is used to achieve a high step-up voltage gain by adjusting the turns ratio. Moreover, the leakage-inductor energies of the primary and secondary windings can be recycled. Thus, the conversion efficiency can be improved. Therefore, only one power converter is utilized at the charging or discharging modes. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

A High-Efficiency High Step-Up Interleaved Converter with a Voltage Multiplier for Electric Vehicle Power Management Applications

  • Tseng, Kuo-Ching;Chen, Chun-Tse;Cheng, Chun-An
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.414-424
    • /
    • 2016
  • This paper proposes a novel high-efficiency high-step-up interleaved converter with a voltage multiplier, which is suitable for electric vehicle power management applications. The proposed interleaved converter is capable of achieving high step-up conversion by employing a voltage-multiplier circuit. The proposed converter lowers the input-current ripple, which can extend the input source's lifetime, and reduces the voltage stress on the main switches. Hence, large voltage spikes across the main switches are alleviated and the efficiency is improved. Finally, a prototype circuit with an input voltage of 24 V, an output voltage of 380 V, and an output rated power of 1 kW is implemented and tested to demonstrate the functionality of the proposed converter. Moreover, satisfying experimental results are obtained and discussed in this paper. The measured full-load efficiency is 95.2%, and the highest measured efficiency of the proposed converter is 96.3%.

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.

A Novel Switched-Capacitor Based High Step-Up DC/DC Converter for Renewable Energy System Applications

  • Radmand, Fereshteh;Jalili, Aref
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1402-1412
    • /
    • 2017
  • This paper presents a new high step-up dc/dc converter for renewable energy systems in which a high voltage gain is provided by using a coupled inductor. The operation of the proposed converter is based on a charging capacitor with a single power switch in its structure. A passive clamp circuit composed of capacitors and diodes is employed in the proposed converter for lowering the voltage stress on the power switch as well as increasing the voltage gain of the converter. Since the voltage stress is low in the provided topology, a switch with a small ON-state resistance can be used. As a result, the losses are decreased and the efficiency is increased. The operating principle and steady-states analyses are discussed in detail. To confirm the viability and accurate performance of the proposed high step-up dc-dc converter, several simulation and experimental results obtained through PSCAD/EMTDC software and a built prototype are provided.