DOI QR코드

DOI QR Code

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • Received : 2013.03.02
  • Published : 2013.09.20

Abstract

The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

Keywords

References

  1. J. H. Lee, J. H. Park, and J. H. Jeon, "Series-connected forward-flyback converter for high step-up power conversion," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3629-3641, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2162747
  2. K. B. Park, G. W. Moon, and M. J. Youn, "High step-up boost converter intergrated with a transformer-assisted auxilary circuit employing quasi-resonant operation," IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 1974-1984, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2170223
  3. S. K. Changchien, T. J. Liang, and J. F. Chen, "Novel high step-up DC-DC converter for fuel cell energy conversion system", IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007-2017, Jun. 2010. https://doi.org/10.1109/TIE.2009.2026364
  4. K. Zou, Scott, M. J., Jin Wnag "A switched-capacitor voltage tripler with automatic interleaving capability," IEEE Trans. Power Electron., Vol. 27, No. 6, pp2857-2868, Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178102
  5. S. Jiang, D. Cao, Y. Li, and F. Z. Peng, "Grid-connected boost-half-bridge photovoltaic microinverter system using repetitive current control and maximum power point tracking," IEEE Trans. Power Electron, Vol. 27, No. 11, pp.4711-4722, Nov. 2012. https://doi.org/10.1109/TPEL.2012.2183389
  6. F. H. Dupont, C. Rech, and R. Gules, "Reduced-order model and control approach for the boost converter with a voltage multiplier cell," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3395-3404, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2224672
  7. R. N. A. L. Silva, G .A. L. Henn, P. P. Praca, R. A. da Camara, L. H. S. C. Barreto, and D. S. Oliveira Jr., "PID digital control applied to a high voltage gain converter with soft-switching cells," Industrial Electronics (ISIE), 2010 IEEE International Symposium on., pp. 992-997, 2010.
  8. I. Laird and D. Dah-Chuan Lu, "High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 740-741, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2205162
  9. D. H. Kim, S. Moon, C. I. Kim, and J.-H. Park, "Seriesconnected isolated-switched-capacitor boost converter," IPEMC Power Electronics and Motion Control Conference, Vol. 2, pp. 1343-1346, 2012.
  10. B. Gu, J. Dominic, J. S. Lai, Z. Zhao, and C. Liu, "High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications," IEEE Trans. Power Electron, Vol. 28, No. 4, pp. 2048 -2058, Apr. 2013.
  11. P. K. Peter and V. Agarwel, "Analysis and design of a ground isolated switched capacitor DC-DC converter," Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 632-637, 2010.
  12. S. Lee, P. Kim, and S. Choi, "High step-up soft-switched converters using voltage multiplier cells," IEEE Trans. Power Electron, Vol. 28, No. 7, pp. 3379-3387, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2227508
  13. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, "Voltage multiplier cells applied to non-isolated DC-DC converters," IEEE Trans. Power Electron, Vol. 23, No. 2, pp. 871-887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  14. K. C. Tseng, C. C. Huang, and W. Y. Shih, "A high step-up converter with a voltage multiplier module for a photovoltaic system," IEEE Trans. Power Electron, Vol. 28, No. 6, pp. 3047-3057, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2217157
  15. D. Meneses, F. Blaabjerg, O. Garcia, and J. A. Cobos "Review and comparison of step-up transformerless topologies for photovoltaic AC-module application," IEEE Trans. Power Electron, Vol. 28, No. 6, pp. 2649-2663, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2227820
  16. Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65-73, Jan. 2003. https://doi.org/10.1109/TPEL.2002.807188
  17. K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," Proc. Inst. Elect. Eng.-Elect. Power Appl., Vol. 151, No. 2, pp. 182-190, Mar. 2004. https://doi.org/10.1049/ip-epa:20040022
  18. T. J. Liang and K. C. Tseng, "Analysis of integrated boostflyback step-up converter," Proc. Inst. Elect. Eng.-Electr. Power Appl., Vol. 152, No. 2, pp. 217-225, Mar. 2005. https://doi.org/10.1049/ip-epa:20045003
  19. R. J. Wai and R. Y. Duan, "High step-up converter with coupled-inductor," IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1025-1035, Sep. 2005. https://doi.org/10.1109/TPEL.2005.854023
  20. Y.-P. Hsieh, J.-F. Chen, and T.-J. Liang, "Novel high stepup DC-DC converter with coupled-inductor and switchedcapacitor techniques for a sustainable energy system," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3481-3490, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2160876
  21. H. Cheng, K. M. Smedley, and A. Abramovitz, "Wide input wide output (WIWO) DC-DC converter," IEEE Trans. Power Electron., Vol. 25, No. 2, pp. 280-289, Feb. 2010. https://doi.org/10.1109/TPEL.2009.2025375
  22. H. W. Seong, H. S. Kim, and K. B. Park, "High step-up DCDC converters using zero-voltage switching boost integration technique and light-load frequency modulation control," IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1383-1400, Mar. 2012. https://doi.org/10.1109/TPEL.2011.2162966
  23. J. W. Ahn and D. H. Lee, "Performance of passive boost switched reluctance converter for single-phase switched reluctance motor," Journal of Electrical Engineering & Technology, Vol. 6, No. 4, pp. 505-512, Jul. 2011. https://doi.org/10.5370/JEET.2011.6.4.505
  24. Q. N. Trinh and H. H. Lee, "A new z-source inverter topology with high voltage boost ability," Journal of Electrical Engineering & Technology, Vol. 7, No. 5, pp. 714-723, Sep. 2012. https://doi.org/10.5370/JEET.2012.7.5.714
  25. Do-Hyun Kim and Joung-Hu Park, "High efficiency stepdown flyback converter using coaxial cable coupledinductor," Journal of Power Electronics, Vol. 13, No. 2, pp. 214-222, Mar. 2013. https://doi.org/10.6113/JPE.2013.13.2.214

Cited by

  1. Loss Analysis and Soft-Switching Behavior of Flyback-Forward High Gain DC/DC Converters with a GaN FET vol.16, pp.1, 2016, https://doi.org/10.6113/JPE.2016.16.1.84
  2. Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors vol.16, pp.5, 2016, https://doi.org/10.6113/JPE.2016.16.5.1629
  3. Lossless Snubber with Minimum Voltage Stress for Continuous Current Mode Tapped-Inductor Boost Converters for High Step-up Applications vol.14, pp.4, 2014, https://doi.org/10.6113/JPE.2014.14.4.621
  4. Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage vol.9, pp.6, 2014, https://doi.org/10.5370/JEET.2014.9.6.2004
  5. High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple vol.15, pp.6, 2015, https://doi.org/10.6113/JPE.2015.15.6.1468
  6. Analysis and Design of a High-Efficiency Boundary Conduction Mode Tapped-Inductor Boost LED Driver for Mobile Products vol.14, pp.4, 2014, https://doi.org/10.6113/JPE.2014.14.4.632