• Title/Summary/Keyword: high-frequency induction heated sintering

Search Result 17, Processing Time 0.026 seconds

Rapid Sintering of Nanostuctured Tungsten Carbide by High-Frequency Induction Heating and its Mechanical Properties (고주파유도 가열에 의한 나노구조의 텅스텐 카바이드 급속소결과 기계적 성질)

  • Kang, Hyun-Su;Doh, Jung-Mann;Hong, Kyung-Tae;Ko, In-Yong;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1009-1013
    • /
    • 2010
  • Extremely dense WC with a relative density of up to 99% was obtained within five minutes under a pressure of 80 MPa using the High-Frequency Induction Heated Sintering method. The average grain size of the WC was about 71 nm. The advantage of this process is not only rapid densification to obtain a neartheoretical density but also the prohibition of grain growth in nano-structured materials. The hardness and fracture toughness of the dense WC produced by HFIHS were $2660kg{\cdot}mm^{-2}$ and $7.2MPa{\cdot}m^{1/2}$, respectively.

High-Frequency Induction-Heated Combustion Synthesis and Consolidation of Nanostructured NbSi2 from Mechanically Activated Powders

  • Kim, Byung-Ryang;Yoon, Jin-Kook;Nam, Kee-Seok;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.279-284
    • /
    • 2008
  • Dense nanostructured $NbSi_2$ was synthesized by high-frequency induction-heated combustion synthesis (HFIHCS) method within 1 minute in one step from mechanically activated Nb and Si powders. Highly dense $NbSi_2$ with relative density of up to 99% was simultaneously synthesized and consolidated under the combined effects of an induced current and mechanical pressure of 60 MPa. The average grain size and mechanical properties (hardness and fracture toughness) of the compound were investigated.

Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite

  • Lee, BooRak;Jeong, GeolChae;Park, GeunO;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.343-348
    • /
    • 2018
  • Recently, the properties of nanostructured materials as advanced engineering materials have received great attention. These properties include fracture toughness and a high degree of hardness. To hinder grain growth during sintering, it is necessary to fabricate nanostructured materials. In this respect, a high-frequency induction-heated sintering method has been presented as an effective technique for making nanostructured materials at a lower temperature in a very short heating period. Nanopowders of W and $Al_2O_3$ are synthesized from $WO_3$ and Al powders during high-energy ball milling. Highly dense nanostructured $W-Al_2O_3$ composites are made within three minutes by high-frequency induction-heated sintering method and materials are evaluated in terms of hardness, fracture toughness, and microstructure. The hardness and fracture toughness of the composite are $1364kg/mm^2$ and $7.1MPa{\cdot}m^{1/2}$, respectively. Fracture toughness of nanostructured $W-Al_2O_3$ is higher than that of monolithic $Al_2O_3$. The hardness of this composite is higher than that of monolithic W.

Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion (기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Hong, Kyung-Tae;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.614-618
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

Rapid Sintering Process of Ultra Fine WC-Co Hard Materials by High-Frequency Induction Heating

  • Kim, H.C;Oh, D.Y.;Jeong, J.W.;Shon, I.J.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.10a
    • /
    • pp.39-40
    • /
    • 2003
  • 1) Using a developed high-frequency induction heated sintering method, the rapid densification of WC-Co hard materials was accomplished using ultra fine powders with 260 nm size within 1 minute. 2) The relative density of the composite was 99.5% for the applide pressure of 60MPa and the induced current for 90% output of total capacity. 3) The grain size of WC-Co hard materials is about 260nm and the average thickness of the binder phase determined is about 11nm. The fracture toughness and the hardness of this work 12 $MPa{\cdot}nm^2$, respectively. 4) Using pressureless sintering, we produced dense WC-Co hard materials with a relative density of 97% without applying pressure.

  • PDF

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties

  • Kang, Hyun-Su;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.180-185
    • /
    • 2014
  • The current concern about these materials ($MoSi_2$ and $NbSi_2$) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured $MoSi_2-NbSi_2$ composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density $MoSi_2-NbSi_2$ composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were $1180kg/mm^2$ and $3MPa{\cdot}m^{1/2}$, respectively. These fracture toughness and hardness values of the nanostructured $MoSi_2-NbSi_2$ composite are higher than those of monolithic $MoSi_2$ or $NbSi_2$.

Mechanical Properties and Consolidation of Ultra-Fine WC-10Co and WC-10Fe Hard Materials by Rapid Sintering Process (급속 소결 공정에 의한 초미립 WC-10Co와 WC-10Fe 초경재료 제조와 기계적 성질)

  • Jeong, In Kyoon;Park, Jung-Hwan;Doh, Jung-Mann;Kim, Ki-Youl;Woo, Kee-Do;Ko, In-Young;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.223-226
    • /
    • 2008
  • The comparison of sintering behavior and mechanical properties of ultra-fine WC-10wt.%Co and WC-10wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) was accomplished using ultra fine powder of WC and binders(Co, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC-10Co and WC-10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 minute without significant change in grain size. The hardness and fracture toughness of the dense WC-10Co and WC-10Fe composites produced by HFIHS were investigated.

Rapid Sintering and Synthesis of TiAl by High-Frequency Induction Heating and its Mechanical properties (고주파유도 가열에 의한 나노구조의 TiAl 급속소결과 합성 및 기계적 성질)

  • Kim, Na-Ri;Na, Kwon-Il;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.989-994
    • /
    • 2010
  • A nanopowder of TiAl was synthesized by high energy ball milling. Dense nanostuctured TiAl was consolidated using a high frequency induction heated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. Properties of the TiAl obtained using the two methods were compared. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 40 nm, 20 nm, and $630kg/mm^2$, $700kg/mm^2$, respectively.

Rapid Sintering and Synthesis of a Nanocrystalline Fe-Si3N4 Composites by High-Frequency Induction Heating (고주파유도 가열에 의한 나노구조 Fe-Si3N4 복합재료의 합성 및 급속소결)

  • Ko, In-Yong;Du, Song-Lee;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Sang-Whan;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.715-719
    • /
    • 2011
  • Nanopowders of $Fe_3N$ and Si were fabricated by high-energy ball milling. A dense nanostructured $12Fe-Si_3N_4$ composite was simultaneously synthesized and consolidated using a high-frequency induction-heated sintering method for 2 minutes or less from mechanically activated powders of $Fe_3N$ and Si. Highly dense $12Fe-Si_3N_4$ with a relative density of up to 99% was produced under simultaneous application of 80 MPa pressure and the induced current. The microstructure and mechanical properties of the composite were investigated.

Rapid Synthesis and Sintering of Nanostructured MgTiO3 Compound by High-Frequency Induction Heating (고주파 유도 가열에 의한 급속 나노구조 MgTiO3 화합물 합성 및 소결)

  • Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Bang-Ju;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.891-896
    • /
    • 2012
  • Nanopowders of MgO and $TiO_2$ were made by high energy ball milling. The rapid synthesis and sintering of the nanostructured $MgTiO_3$ compound was investigated by the high-frequency induction heated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. A highly dense nanostructured $MgTiO_3$ compound was produced with simultaneous application of 80 MPa pressure and induced current within 2 min. The sintering behavior, gain size and mechanical properties of $MgTiO_3$ compound were investigated.