Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.6.343

Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite  

Lee, BooRak (Department of Advanced Materials Engineering, Korea Polytechnic University)
Jeong, GeolChae (Department of Advanced Materials Engineering, Korea Polytechnic University)
Park, GeunO (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University)
Publication Information
Korean Journal of Materials Research / v.28, no.6, 2018 , pp. 343-348 More about this Journal
Abstract
Recently, the properties of nanostructured materials as advanced engineering materials have received great attention. These properties include fracture toughness and a high degree of hardness. To hinder grain growth during sintering, it is necessary to fabricate nanostructured materials. In this respect, a high-frequency induction-heated sintering method has been presented as an effective technique for making nanostructured materials at a lower temperature in a very short heating period. Nanopowders of W and $Al_2O_3$ are synthesized from $WO_3$ and Al powders during high-energy ball milling. Highly dense nanostructured $W-Al_2O_3$ composites are made within three minutes by high-frequency induction-heated sintering method and materials are evaluated in terms of hardness, fracture toughness, and microstructure. The hardness and fracture toughness of the composite are $1364kg/mm^2$ and $7.1MPa{\cdot}m^{1/2}$, respectively. Fracture toughness of nanostructured $W-Al_2O_3$ is higher than that of monolithic $Al_2O_3$. The hardness of this composite is higher than that of monolithic W.
Keywords
nanomaterial; sintering; composite; hardness; fracture toughness;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I.-J. Shon and S.-J. Lee, Int. J. Refract. Met. Hard Mater., 65, 69 (2017).   DOI
2 I.-J. Shon, Korean J. Met. Mater., 54, 826 (2016).   DOI
3 I.-J. Shon, Int. J. Refract. Met. Hard Mater., 72, 257 (2018).   DOI
4 E. Lassner and W-D. Schubert, Tungsten-properties, chemistry, technology of the element, alloys, and chemical compounds, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 255.
5 I.-J. Shon, H. J. Kwon, and H.-S. Oh, Electron. Mater. Lett., 10, 337 (2014).   DOI
6 C. Suryanarayana and M. Grant Norton, X-ray diffraction: a practical approach, Plenum Press, New York, 1998.
7 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002).   DOI
8 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett., 85, 573 (2004).   DOI
9 I.-J. Shon, Ceram. Int., 42, 15113 (2016).   DOI
10 I.-J. Shon, Ceram. Int., 42, 13314 (2016).   DOI
11 W. B. Kim, K.-M. Roh, J.-W. Lim, H.-S. Oh, and I.-J. Shon, J. Alloys Compd., 574, 260 (2013).   DOI
12 K. Niihara, R. Morena, and D. P. H. Hasselman, Mater. Sci. Lett., 1, 13 (1982).   DOI
13 M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, J. Am. Ceram. Soc., 90, 1965 (2007).   DOI
14 R. Malewar, K. S. Kumar, B. S. Murty, B. Sarma, and S. K. Pabi, J. Mater. Res., 22, 1200 (2007).   DOI
15 W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., p.580, McGraw Hill, New York, U.S.A. (1993).
16 L. Uray, Int. J. Refract. Met. Hard Mater., 20, 311 (2002).   DOI
17 L. Uray, Int. J. Refract. Met. Hard Mater., 20, 319 (2002).   DOI
18 M. Sherif El-Eskandarany, J. Alloys Compd., 305, 225 (2000).   DOI
19 I.-J. Shon, Int. J. Refract. Met. Hard Mater., 64, 242 (2017).   DOI