Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.4.180

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2-NbSi2 Composite by High-Frequency Induction Heated Sintering and Its Mechanical Properties  

Kang, Hyun-Su (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Chonbuk National University)
Publication Information
Korean Journal of Materials Research / v.24, no.4, 2014 , pp. 180-185 More about this Journal
Abstract
The current concern about these materials ($MoSi_2$ and $NbSi_2$) focuses on their low fracture toughness below the ductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructured and composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellent ductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb, and Si were fabricated by high-energy ball milling. A dense nanostructured $MoSi_2-NbSi_2$ composite was simultaneously synthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powders of Mo, Nb, and Si. The high-density $MoSi_2-NbSi_2$ composite was produced under simultaneous application of 80MPa pressure and an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated. The average hardness and fracture toughness values obtained were $1180kg/mm^2$ and $3MPa{\cdot}m^{1/2}$, respectively. These fracture toughness and hardness values of the nanostructured $MoSi_2-NbSi_2$ composite are higher than those of monolithic $MoSi_2$ or $NbSi_2$.
Keywords
composite; mechanical properties; sintering; nanostructured materials;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 I. J. Shon, K. I. Na, J. M. Doh, H. K. Park and J. K. Yoon, Met. Mater. Int., 19, 99 (2013).   DOI   ScienceOn
2 A. K. Vasudevan, J. J. Petrovic, Mater. Sci. Eng., A 155, 1 (1992).   DOI   ScienceOn
3 R. Mitra, Y. R. Mahajan, N. E. Prasad, W. A. Chiou, C. Ganguly. Key Eng. Mater., 108-110, 11 (1995).   DOI
4 J. Milne, Instant Heat, Kinetic Metals Inc., Derby, Connecticut, (1985).
5 G. Sauthoff, Intermetallics, VCH Publishers, New York, (1995).
6 Y. Ohya, M. Hoffmann, G. Petzow, J. Mater. Sc. Lett., 12, 149 (2004).
7 I. Y. Ko, B. R. Kim, K. S. Nam, B. M. Moom, B. S. Lee and I. J. Shon, Met. Mater. Int., 15, 399 (2009).   DOI   ScienceOn
8 I. J. Shon, I. Y. Ko, H. S. Kang, K. T. Hong, J. M. Doh and J. K. Yoon, Met. Mater. Int., 18, 115 (2012).   DOI   ScienceOn
9 Y. Ohya, M. J. Hoffmann and G. Petzow, J. Am. Ceram. Soc., 75, 2479 (1992).   DOI
10 S. K. Bhaumik, C. Divakar, A. K. Singh and G. S. Upadhyaya, J. Mater. Sci. Eng., A 279, 275 (2000).   DOI   ScienceOn
11 H. S. Nalwa, Hanbook of Nanostructured Materials and Nanotechnology. Academic Press, Tokyo, (1996).
12 S. Berger, R. Porat and R. Rosen, Prog. Mater. Sci., 42, 311 (1997).   DOI   ScienceOn
13 G. W. Lee and I. J. Shon, Korean. J. Met. Mater., 51, 95 (2013).
14 S. M. Kwak, H. K. Park and I. J. Shon, Korean. J. Met. Mater., 51, 314 (2013).
15 I. J. Shon, G. W. Lee, J. M. Doh and J. K. Yoon, Electron. Mater. Lett., 9, 219 (2013).   DOI   ScienceOn
16 V. Gauthier, C. Josse, F. Bernard, E. Gaffet and J. P. Larpin, Mater. Sci. Eng., A262, 117 (1999).
17 M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005).   DOI   ScienceOn
18 I. J. Shon, S. L. Du, j. M. Doh and J. K. Yoon, Met. Mater. Int. 19, 1041 (2013).   DOI   ScienceOn
19 N. R. Kim, S. W. Cho, W. Kim and I. J. Shon, Korean. J. Met. Mater., 50, 34 (2012).   DOI
20 Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002).   DOI   ScienceOn
21 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka- Kumar, Appl. Phys. Lett., 85, 573 (2004).   DOI   ScienceOn
22 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Intermetallics, 12, 589 (2004).   DOI   ScienceOn
23 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Acta Mater., 51, 4487 (2003).   DOI   ScienceOn
24 A. K. Vasudevan and J. J. Petrovic, Mater. Sci. Eng., A 155, 1 (1992).   DOI   ScienceOn
25 F. Chu, M. Lei, S. A. Maloy. J. J. Petrovic and T. E. Mitchell, Acta mater.,44, 3035 (1996).   DOI   ScienceOn
26 R. K. Wade and J. J. Petrovic, J. Am. Ceram. Soc. 75, 1682 (1992).   DOI
27 C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
28 F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard and J. C. Liepce, Mater. Sci. Eng., A262, 279 (1999).
29 G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).   DOI
30 Y. S. Touloukian, R. W. Powell, C. Y. Ho, P. G. Klemens, Thermal Conductivity, IFI/Plenum, New York, (1970).