DOI QR코드

DOI QR Code

High-Frequency Induction-Heated Combustion Synthesis and Consolidation of Nanostructured NbSi2 from Mechanically Activated Powders

  • Kim, Byung-Ryang (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Nam, Kee-Seok (Department of Surface Engineering, Korea Institute of Materials Science) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University)
  • Published : 2008.08.28

Abstract

Dense nanostructured $NbSi_2$ was synthesized by high-frequency induction-heated combustion synthesis (HFIHCS) method within 1 minute in one step from mechanically activated Nb and Si powders. Highly dense $NbSi_2$ with relative density of up to 99% was simultaneously synthesized and consolidated under the combined effects of an induced current and mechanical pressure of 60 MPa. The average grain size and mechanical properties (hardness and fracture toughness) of the compound were investigated.

Keywords

References

  1. J. Kajuch, J. D. Rigney, and J. J. Lewandowski: Mater. Sic. Eng., A155 (1992) 59
  2. S. P. Muraka: Intermetallics, 3 (1995) 173 https://doi.org/10.1016/0966-9795(95)98929-3
  3. J. P. Gambino and E. G. Colgan: Mater. Chem. Phys., 52 (1998) 99 https://doi.org/10.1016/S0254-0584(98)80014-X
  4. G. Sauthoff: Intermetallics, VCH Publishers, New York, (1995) 1
  5. Y. Ohya, M. J. Hoffmann and G. Petzow: J. Mater. Sci. Lett., 12 (1993) 149 https://doi.org/10.1007/BF00819942
  6. J. Qian, L. L. Daemen and Y. Zhao: Diamond & Related Materials, 14 (2005) 1669 https://doi.org/10.1016/j.diamond.2005.06.007
  7. H. Gleiter: Progress in Mater. Sci., 33 (1989) 223 https://doi.org/10.1016/0079-6425(89)90001-7
  8. G. E. Fougere, J. R. Weertman, R. W. Siegel and S. Kim: Scripta Metallurgica et Materialia, 26 (1992) 1879 https://doi.org/10.1016/0956-716X(92)90052-G
  9. S. Paris, C. Valot, E. Gaffet and Z. A. Munir: J. Mater. Res., 15-16 (2003) 259
  10. H. K. Park, I. J. shon, J. K. Yoon, J. M. Doh, I. Y. Ko and Z. A. Munir: J. Alloys and Compds., 461 (2008) 560 https://doi.org/10.1016/j.jallcom.2007.07.065
  11. H. C. Kim, D. Y. Oh and I. J. Shon: Int. J. Refrac. Met. & Hard Mater., 22 (2004) 41 https://doi.org/10.1016/j.ijrmhm.2003.12.002
  12. H. C. Kim, D. Y. Oh, J. Guojian and I. J. Shon: Mater. Sci. Eng., A368 (2004) 10 https://doi.org/10.1016/j.msea.2003.08.105
  13. D. Y. Oh, H. C. Kim, J. K. Yoon and I. J. Shon: J. Alloys and Compds., 395 (2005) 270 https://doi.org/10.1016/j.jallcom.2004.05.069
  14. C. Suryanarayana and M. Grant Norton: X-ray Diffraction A Practical Approach, Plenum Press, (1998) 213
  15. D. Y. Oh, H. C. Kim, J. K. Yoon and I. J. Shon: J. Alloys and Compds., 386 (2005) 270 https://doi.org/10.1016/j.jallcom.2004.05.069
  16. K. Niihara, R. Morena, and D. P. H. Hasselman: J. Mater. Sci. Lett., 1 (1982) 12 https://doi.org/10.1007/BF00724706