• Title/Summary/Keyword: high voltage

Search Result 10,487, Processing Time 0.045 seconds

A Study on the Temperature Characteristics of High Voltage Power Cable for Hybrid Electric Vehicle (하이브리드 자동차용 고압 케이블의 온도 특성에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Woo;Kim, Dong-Ook;Gil, Hyoung-Jun;Kim, Hyang-Kon;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.338-342
    • /
    • 2008
  • Hybrid Electric Vehicle(HEV) is driven by an internal-combustion engine and an electric motor. It is a combination of an internal-combustion engine and several electrical equipments which use a high voltage battery, an electric motors, an inverter and others. But there is not any separate detailed enforcement regulations for high voltage electric appliances in the existing vehicle-related safety standards. So, test standards suggestion as well as test technique development need to be done for ensuring electrical safety, for an electric motor, a high voltage battery, a(n) inverter/converter and an electric power transmission units and other equipments to ensure the safety of high voltage electric appliances which is the HEV key electrical component. In this paper, We are to provide helpful data to support test technique development and test standard establishment for HEV design and electrical safety security by the following methods; by measuring the voltage, the electric current, and the frequency of HEV, by analyzing electrical characteristics of high voltage electric appliances, and by analyzing temperature characteristics of the electrical current among the analyzed electrical characteristics by thermal imagining cameras.

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor (친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템)

  • Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

A Study on the SPICE Model Parameter Extraction Method for the DC Model of the High Voltage MOSFET (High Voltage MOSFET의 DC 해석 용 SPICE 모델 파라미터 추출 방법에 관한 연구)

  • Lee, Un-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2281-2285
    • /
    • 2011
  • An algorithm for extracting SPICE MOS level 2 model parameters for the high voltage MOSFET DC model is proposed. The optimization method for analyzing the nonlinear data of the current-voltage curve using the Gauss-Newton algorithm is proposed and the pre-process step for calculating the threshold voltage and the mobility is proposed. The drain current obtained from the proposed method shows the maximum relative error of 5.6% compared with the drain current of 2-dimensional device simulation for the high voltage MOSFET.

Measurement of Ratio Error/Phase Angle Error of Potential Transformer using High Voltage Capacitance Bridge and Uncertainty Analysis (고전압 전기용량 브리지를 이용한 전압변성기의 비오차와 위상각 오차의 측정과 불확도 분석)

  • Kwon, Sung-Won;Lee, Sang-Hwa;Kim, Myung-Soo;Jung, Jae-Kap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.134-141
    • /
    • 2006
  • A potential transformer(PT) has ratio error and phase angle error. Precise measurement of the errors of PT can be achieved using high voltage capacitance bridge, high voltage capacitor and low voltage capacitor. The uncertainty for this method is evaluated and found to be $20{\times}10^{-6}$ in both ratio error and phase angle error. The values measured for PT using the method are well consistent with the those measured for same PT in NMIA(National Measurement Institute of Australia) within the corresponding uncertainty.

Theoretical Study of Pulse Circuits with the Load Variation for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 관한 부하의 변화를 고려한 펄스회로의 이론적 연구)

  • Kim, Young-Ju;Bang, Sang-Seok;Lee, Chae-Han;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.106-112
    • /
    • 2016
  • The high-voltage pulse generator consists of transformers of fundamental wave and harmonic waves, and shunt capacitors. The pulse has the fundamental wave and the harmonic waves that have been as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed by using transformer equivalent circuits with the effect of load and simulated in time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 2.0kV. In high voltage circuit, capacitors are related to frequency band pass characteristics. Also, it is shown that the voltage of output pulse increases according to the growth of load.

Fabrication and Analysis of Multilayer Ceramic Capacitors for Medium and High Voltage (중, 고압용 적층 세라믹 캐패시터 제작 및 분석)

  • Yoon, Jung-Rag;Kim, Min-Ki;Lee, Heun-Young;Lee, Serk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.685-689
    • /
    • 2005
  • In the fabrication and design of MLCCs (Multilayer Ceramic Capacitors) with Ni inner electrode for medium and high voltage, reliability and dielectric breakdown mode have been investigated. For thickness of green sheet, the relationship between the rated voltage versus the thickness of green sheet. Increasing the thickness of green sheet increases the dielectric breakdown voltage. However, a practical limit to this linear relationship occurs at 30 urn and above. As the thickness of green sheet increased, dielectric breakdown voltage and weibull coefficient is increased, but abruptly decrease at 30 urn and 36 urn. When 24 urn of green sheet thickness, weibull coefficient and dielectric breakdown voltage were 13.58 and 70 V/um respectively. The results enabling the MLCCs to demonstrate high levels of reliability at medium and high voltage.

Reduction of common mode voltage and high frequency leakage current generated by the PWM voltage source inverter using common mode voltage damper (능동보조회로를 이용한 전압형 PWM 인버어터 시스템에서의 커먼 모드전압과 고주파 누설전류 억제방법에 관한 연구)

  • 전진휘;박성준;김광태;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.373-376
    • /
    • 1999
  • This paper propose a "common mode voltage damper" that is capable of reducing the common mode voltage produced in the PWM VSI. An push-pull circuits and high frequency leakage current damper[1] are incorporated into the "common mode voltage damper", the design method of which is presented. Effect of "common mode voltage damper" is simulated in this paper verifies the viability and effectiveness in 2.2kW induction motor drive using IGBT inverter. Simulated results show that "common mode voltage damper" makes significant contributions to reducing a high frequency leakage current.ducing a high frequency leakage current.

  • PDF

Analysis on the effect of RC filter to mitigate transient overvoltage on the high voltage induction motor fed by Multi level inverter (멀티레벨 인버터 구동 고압유도전동기에서 발생하는 과도과전압 저감을 위한 RC필터의 효과분석)

  • Kwon, Young-Mok;Kim, Jae-Chul;Kim, Young-Sung;Lee, Yang-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.399-403
    • /
    • 2005
  • In this paper, we analyze on the effect of RC filter to mitigate transient overvoltage on the high voltage induction motor fed by H-bridge cascaded 7-level inverter. The switching surge voltage becomes the major cause to occur the insulation failure by serious voltage stress in the stator winding of high voltage induction motor. The effect of switching surge appears more serious in high voltage induction motor than low voltage induction motor. Consequently, we demonstrated that the RC filter connected to the motor terminals greatly reduces the transient voltage stress md ringing. The results of simulation show the suppression of transient overvoltage at the motor end of a long cable. using EMTP

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.