• Title/Summary/Keyword: high linearity

Search Result 1,060, Processing Time 0.028 seconds

The design of high-accuracy CMOS sampel-and-hold amplifiers (고정밀 CMOS sample-and-hold 증폭기 설계 기법 및 성능 비교)

  • 최희철;장동영;이성훈;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.239-247
    • /
    • 1996
  • The accuracy of sample-and-hold amplifiers (SHA's) empolying a CMOS process in limited by nonideal factors such as linearity errors of an op amp and feedthrough errors of switches. In this work, after some linearity improvement techniques for an op amp are discussed, three different SHA's for video signal processing are designed, simulated, and compared. The CMOS SHA design techniques with a 12-bit level accuracy are proposed by minimizing cirucit errors based on the simulated results.

  • PDF

Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications

  • Malik, Priyanka;Gupta, R.S.;Chaujar, Rishu;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.169-181
    • /
    • 2011
  • In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.

창원시 대산면 강변여과수의 수질과 낙동강 수질의 관련성 연구

  • 장성;함세영;김형수;차용훈;정재열
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.451-454
    • /
    • 2004
  • The study aims to assess the quality of bank filtrate in relation to streamflow and physico-chemical properties of the stream. Turbidity, pH, temperature and dissolved oxygen (DO) of Nakdong River and riverbank filtrate were statistically analyzed. The physico-chemical properties of riverbank filtrate were measured from irregularly different seven pumping wells every day. Autocorrelation analyses were conducted to the qualities of stream water and bank filtrated water. Temperature, pH and DO of streamflow shows strong linearity and long memory effect, indicating the effect of seasonal air temperature and rainy season. Temperature of riverbank filtrate shows weak linearity and weak memory, indicating differently from the trend of stream temperature. Turbidity of steramflow shows strong linearity and long memory effect, while turbidity of riverbank filtrate indicates weak linearity and weak memory. Cross-correlation analysis shows low relation between turbidity, pH, temperature and DO of riverbank filtrate and those of streamflow. Turbidity of streamflow was largely affected by the streamflow rate, showing a similar trend with autocorrelation function of streamflow rate. The turbidity of riverbank filtrate has a lag time of 25 hours. This indicates that turbidity of streamflow in a dry season has very low effect on the turbidity of riverbank filtrate, and a high turbidity of the stream in a rainy season has a fairly low effect on the turbidity of riverbank filtrate.

  • PDF

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Performance Improvement of Sensorless Vector Control for Induction Motor Drives Driven By Matrix Converter Using Non-Linearity Compensation and Disturbance Observer (비선형 모델링과 외란 관측기를 이용한 Matrix Converter로 구동되는 유도전동기 센서리스 벡터제어의 성능 개선)

  • Kyo-Beum Lee
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.500-508
    • /
    • 2004
  • This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new matrix converter modeling. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by the radial basis function network (RBFN). An adaptive observer is also employed to bring better responses at the low speed operation. Experimental results are shown to illustrate the performance of the proposed system.

Fabrication of Metal Thin-Film Type Pressure Sensors (금속박막형 압력센서의 제작)

  • 최성규;김병태;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.587-590
    • /
    • 2000
  • This paper presents the characteristics of metal thin-film pressure sensors. The micro pressure sensors consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si wafer an aluminium interconnection layer. The fabricated micro pressure sensors shows a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.16~1.21 mV/V.kgf/$\textrm{cm}^2$ in the temperature range of 25~l0$0^{\circ}C$ and the maximum non-linearity is 0.21 %FS.

  • PDF

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

Inductive Micro Displacement Detecting System with High Sensitivity and Low Linearity Error

  • Park, Dong-June;Park, In-Mook;Kim, Soo-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.54-60
    • /
    • 2001
  • A newly designed inductive micro displacement detecting system is presented. The proposed inductive system consists of driving coils, position-detecting coils, cores, and closed-loop formed magnetic blocks. The cores and magnetic blocks are made of Mn-Zn ferrite. When AC sine wave is applied to the driving coils, the time derivative flux is generated within the system, and then induced voltages arise in the position-detecting coils according to the core\`s position. Putting the cores to be moved proportionally to the input displacement, the induced voltage is proportional to input displacement. The parameters that affect the system characteristics are turn ratio, air-gap size, excitation frequency, overlap area, load resistance, capacitance effect, and so forth. Based on the experimental results, the system parameters are selected in such a way as to have high sensitivity ad stable responses. The sensitivity of the proposed inductive displacement-detecting system is greater than 2800mV.V-1mm-1 and the linearity error is below $\pm$0.10% in the range of $\pm$200㎛.

  • PDF

An Integrated High Linearity CMOS Receiver Frontend for 24-GHz Applications

  • Rastegar, Habib;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.595-604
    • /
    • 2016
  • Utilizing a standard 130-nm CMOS process, a RF frontend is designed at 24 GHz for automotive collision avoidance radar application. Single IF direct conversion receiver (DCR) architecture is adopted to achieve high integration level and to alleviate the DCR problem. The proposed frontend is composed of a two-stage LNA and downconversion mixers. To save power consumption, and to enhance gain and linearity, stacked NMOS-PMOS $g_m$-boosting technique is employed in the design of LNA as the first stage. The switch transistors in the mixing stage are biased in subthreshold region to achieve low power consumption. The single balanced mixer is designed in PMOS transistors and is also realized based on the well-known folded architecture to increase voltage headroom. This frontend circuit features enhancement in gain, linearity, and power dissipation. The proposed circuit showed a maximum conversion gain of 19.6 dB and noise figure of 3 dB at the operation frequency. It also showed input and output return losses of less than -10 dB within bandwidth. Furthermore, the port-to-port isolation illustrated excellent characteristic between two ports. This frontend showed the third-order input intercept point (IIP3) of 3 dBm for the whole circuit with power dissipation of 6.5 mW from a 1.5 V supply.