• Title/Summary/Keyword: high fat diet-induced obesity model

Search Result 118, Processing Time 0.02 seconds

Anti-obesity Effect of Jeoreongchajeonja-tang in a High-fat Diet-induced Obesity Mouse model (고지방식이로 유도된 비만 생쥐모델에서 저령차전자탕의 항비만 효과)

  • Jang, SoonWoo;Kho, Young-mee;Kwak, Jin-young;Ahn, Taek-won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.30 no.2
    • /
    • pp.8-27
    • /
    • 2018
  • Objective This study investigated the effects of Jeoreongchajeonja-tang in a high-fat diet-induced obesity mouse model. Methods The study examined 9-week-old male mice (C57bl/6J) divided into four groups: the normal(C57bl/6J-Nr), control (high-fat diet only; HFD-CTL), positive-control (high-fat diet with Garcinia cambogia), and experimental (high-fat diet with Jeoreongchajeonja-tang; HFD-JCT) groups. After 7 weeks, the body weight, food efficiency ratio, organ weight, and visceral fat weight of the mice were measured. Blood serum tests, mRNA, liver histopathology, and epididymis adipocytes were also examined. Results Compared with the Control(HFD-CTL) group, the Experimental(HFD-JCT) group given Jeoreongchajeonja-tang showed significant reductions in absolute body weight and food efficiency ratio. The serum alanine aminotransferase, total-cholesterol, triglyceride, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, insulin-like growth factor-1, and leptin levels were significantly lower in the experimental group than in the control group. The serum adiponectin levels were significantly higher in the experimental group than in the control group. Compared with the control group, the experimental group showed significant reductions in absolute abdominal subcutaneous fat, epididymal adipose tissue, kidney adipose tissue, intestine adipose tissue, and liver, kidney and spleen adipose tissue weights. The C/EBP-${\beta}$, leptin, and SREBP1c/ADD1 mRNA expression were significantly lower in the experimental group than in the control group, while the UCP-2 and adiponectin mRNA expression were significantly higher. Compared with the control group, the experimental group showed a significant reduction in the absolute adipocyte area in the liver and epididymal adipose tissue. Conclusion Jeoreongchajeonja-tang has an anti-obesity effect. Additional clinical studies are expected.

Lipid lowering mechanism of sulfur-fed grain larvae extract in high-fat induced obesity rats (고지방식이 유도 비만 랫드에 대한 유황오곡충 추출물의 지질감소 메카니즘)

  • Hwangbo, Jong;Park, Sang-Oh;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.572-583
    • /
    • 2014
  • This study was carried out to determine the action mechanism of sulfur-grain larvae extract (SGE) on anti-obesity and the reduction of blood lipid level in high-fat diet induced obese model animals. Animals were classified into a normal diet group (NC, normal control), HFD (high-fat diet without SGE), HFD 15 (high-fat diet + oral administration of 15 mg of SGE extract per 100 g body weight) and HFD 30 (high-fat diet + oral administration of 30 mg of SGE extract per 100 g body weight). The body weight gain declined in HFD 15 and HFD 30 groups compared with the HFD group, even though the diet intake increased significantly. The weight of liver and adipose tissue increased significantly in HFD group compared with in the HFD 15 and HFD 30 groups. Triglyceride, total cholesterol, LDL-C and AI decreased in HFD 15 and HFD 30 groups compared with in the HFD group, but the contents of HDL-C increased significantly. Expression of SREPB-$1{\alpha}$, SREPB-2 mRNA in the liver was lower in the high-fat diet group compared with the HFD group, but the expression of LPL mRNA in adipose tissue and $PPAR{\alpha}$ increased significantly. Fat accumulation in the liver tissues and liver damage were greatly reduced in HFD 15 and HFD 30 groups compared with in the HFD group. The size of adipocytes became smaller in the HFD 15 and HFD 30 groups compared with HFD group. In conclusion, this research discovered for the first time that grain maggot has anti-obesity effects, by reducing the abdominal fat of obese model animals and lowering blood lipid level through the down-regulation of PPAR-$1{\alpha}$ and SREPB-2 mRNA and the up-regulation of PPAR-${\alpha}$ mRNA.

The Effects of Platycodi Radix on Obese Type 2 Diabetes Mouse Model Induced by High Fat, High Carbohydrate Diet (길경 투여가 고지방, 고탄수화물 식이로 유발된 비만형 제2형 당뇨병 동물모델에 미치는 영향)

  • Kwon, Oh-Jun;Lee, Seung-Wook;Paik, Sun-Ho;Han, Su-Ryun;Ahn, Young-Min;Ahn, Se-Young;Lee, Byung-Cheol
    • The Journal of Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Objectives: This study was designed to investigate the anti-obesity, anti-diabetic and anti-inflammatory effects of Platycodi radix on obese type 2 diabetes mouse model. Methods: Obese type 2 diabetes mouse model was induced by Surwit's high fat, high sucrose diet for 8 weeks. Models were divided into 4 groups of normal diet (ND, n=10), high fat and high sucrose diet (HFD, n=10), high fat and high sucrose diet with Platycodi radix (PR, n=10), and high fat and high sucrose diet with Metformin (Met, n=10). Body weights were measured every week. After 7 weeks fasting, blood sugar and oral glucose tolerance tests were conducted. After 8 weeks blood samples were taken from mouse hearts and analyzed biochemically. Lipid profile, fructosamine, leptin and weight of epididymal fat pad and liver were measured. Adipose tissue macrophage percentage was analyzed by fluorescence-activated cell sorting (FACS). Results: Compared with the HFD group, body weight, glucose level, fructosamine, weight of epididymal fat pad and adipose tissue macrophage percentage decreased in the PR group. Conclusions: These results suggest that Platycodi Radix has anti-obesity, anti-diabetic, and anti-inflammatory effects on obese type 2 diabetes mouse model.

Anti-Obesity Effects of Lactic Acid Bacteria-Fermented Dioscoreae Rhizoma Powder on High Fat Diet-Fed Animal Model (고지방식이에 의한 비만 동물모델에서 유산균 마분말의 항비만 효과)

  • Park, Young Mi;Oh, Hong Geun;Kang, Yang Gyu;Kim, Young Pill;Sin, Hong Sig;Jang, Seung Hwan;Kim, Hee Jeong;Lee, Sang Wang;Lee, Hak Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.267-272
    • /
    • 2015
  • The purpose of this study was to examine the antiobesity effects of lactic acid bacteria-fermented Dioscoreae Rhizoma powder (LDR) in Sprague-Dawley rats with high-fat diet (HFD)-induced obesity. Rats were divided into 5 groups: normal diet group, control (high fat diet-vehicle) group, 0.4 g/kg LDR (high fat diet + 0.4 g/kg lactic acid bacteria-fermented Dioscoreae Rhizoma powder) group, 1 g/kg LDR (high fat diet + lactic acid bacteria-fermented Dioscoreae Rhizoma powder) group, 2.5g/kg LDR (high fat diet + lactic acid bacteria-fermented Dioscoreae Rhizoma powder) group. Our results indicate that LDR administration has effects on decreasing of body weight, fat weight, blood parameters and adipocyte size in the obesity animals. In addition, verified that fat degeneration and ballooning degeneration were alleviated in the experimental group fed on a high fat diet combined with LDR groups. These results indicate that lactic acid bacteria-fermented Dioscoreae Rhizoma powder may reduce elevating body weight and lipid accumulation in rat fed a high fat diet, suggesting its usefulness as a functional food for reducing body fat and obesity.

Anti-obesity Effects of Banggihwnggi-tang-hap-yeonggyechulgam-tang in High Fat Diet Induced Obese Mice Model (고지방식이 비만모델에서 방기황기탕(防己黃芪湯) 합(合) 영계출감탕(苓桂朮甘湯)의 항비만 효과)

  • Kim, Tae-Ryeong;Kim, Young-Jun;Woo, Chang-Hoon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.4
    • /
    • pp.29-45
    • /
    • 2019
  • Objectives This study is to investigate anti-obesity effects of Banggihwanggi-tang-hap-yeonggyechulgam-tang (BY), an herbal formula, in high fat diet induced obese mice model. Methods Fourty five male C57Bl/6J mice were randomly assigned to normal group fed with normal research diet (Nor, n=9), high fat diet control group treated with water (Veh, n=9), high fat diet group treated with orlistat (Oris; n=9, Orlistat 40 mg/kg), high fat diet group treated with low concentraion BY (BYL; n=6, BY 0.87 g/kg) and high fat diet group treated with high concentration BY (BYH; n=6, BY 1.74 g/kg). Results Seven weeks later, antioxidative capacity, body weight, epididymal fat pad and liver weight, reactive oxygen species (ROS), peroxynitrite ($ONOO^-$), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, triglyceride, high density lipoprotein (HDL), low density lipoprotein (LDL), superoxide dismutase (SOD), catalase, glutathione peroxidase (Gpx), heme oxygenase (HO)-1 and histology of liver were evaluated. In the BYH group, 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis (3 ethybenzothiazoline-6-sulfonic acid) radical scavenging activity were more than L-ascorbic acid. Body weight gain were significantly less than Veh group. Epididymal fat pad and liver weight gain were significantly less than Veh group. ROS and $ONOO^-$ were significantly less than with Veh group. ALT and AST were significantly less than with Veh group. Total cholesterol, triglyceride and LDL were significantly less, HDL were significantly more than Veh group. SOD, catalase, Gpx, HO-1 significantly increased compared with Veh group. Injury on liver was lesser than Veh group. Conclusions It can be suggested that BY has anti-obesity effects in high fat diet induced obese mice model.

The Anti-obesity Effects of Younggyechulgam-tang-ga Hwanggi on Obesity in Mice Induced by High Fat Diet (고지방식이 유도 비만생쥐에 대한 영계출감탕(苓桂朮甘湯) 가(加) 황기(黃芪)의 항비만 효과)

  • Jeong, Man-Jin;Woo, Chang-Hoon;Ahn, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.2
    • /
    • pp.1-20
    • /
    • 2018
  • Objectives This study was conducted to experimentally evaluate the effects of Younggyechulgam-tang-ga Hwanggi(YGT) on obesity in mice induced by high fat diet. Methods The experiment was conducted with 4-week-old male mice divided into 5 groups. They were a normal diet group(Nor), a high fat diet group(Veh), a positive drug control group-orlistat 40 mg/kg(Oris), a 1.08 g/kg group(YGTL), and a 2.16 g/kg group(YGTH), and were tested for five weeks. Changes in antioxidant activity, body weight, organ weight, ROS, AST, ALT, TC, TG, HDL-C, LDL-C and lipid metabolism protein were checked. Results YGTL and YGTH group significantly reduced body weight compared to Veh group. YGTH group significantly reduced visceral fat weights compared to Veh group. In blood biochemistry analysis, ROS, AST, ALT, TC, TG and LDL-C in YGTL and YGTH group were significantly lower than Veh group. HDL-C increased significance in YGTL and YGTH group. In antioxidation protein analysis, Catalase, GPx and HO-1 have increased significantly in YGTL and YGTH group. YGTH group have increased $PPAR-{\alpha}$, p-AMPK compared to Veh group. but decreased FAS. SREBP-1, p-ACC levels in YGTL and YGTH group were decreased compared to Veh group, however CPT-1, UCP-2 levels in YGTL and YGTH group were increased compared to Veh group. Conclusions YGT has anti-obesity effects by regulating lipolysis and antioxidation in a diet-induced obesity model. Additional clinical studies are needed.

Effect of Mixture of Atractylodes macrocephala and Amomum villosum Extracts on Body Weight and Lipid Metabolism in High Fat Diet-Induced Obesity Model (고지방식이 유도 비만 모델에서 백출과 사인 추출 혼합물이 체중 및 지질대사에 미치는 영향)

  • Kim, Ha Rim;Kwon, Yong Kwan;Choi, Bong Keun;Jung, Hyun Jong;Baek, Dong Gi
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In this study, we investigated the dose-dependent effects of mixtures of Atractylodes macrocephala (AM) and Amomum villosum (AV) water extracts in a ratio of 3:1 on high fat diet (HFD)-induced obesity model. Oral administration of various concentrations with mixtures of AM and AV extracts in a ratio of 3:1 for 6 weeks inhibited HFD-induced increases of body, liver and epididymal fat weights in a dose-dependent fashions. Those effects may be mediated by decreased expressions of lipogenesis-related genes such as acetyl coA carboxylase (ACC) and fatty acid synthase (FAS) in liver. Also, increase of insulin and decrease of adiponectin in serum by HFD supply were inhibited by three different dosages of mixtures of AM and AV extracts in a ratio of 3:1. HFD supply induced increases of serum total cholesterol, triglyceride and LDL cholesterol. However, hyperlipidemia was significantly decreased in dose-dependent manners by treatment with mixtures of AM and AV extracts. Based on the results of the present study, hypolipidemic and anti-obesity effects by mixtures of AM and AV extracts were found in HFD-induced obesity model. Further clinical investigation is needed to develop anti-obesity therapeutic or preventive agents by using mixtures of AM and AV extracts.

Effects of Cortex Phellodendri on the Metabolic Function in Experimental Mouse Model of Obesity (황백(黃柏)이 비만 유발 mouse의 대사기능에 미치는 영향)

  • Ma, Young-hoon;Kim, Hyo-jae;Han, Yang-hee;Kim, Han-ok;Oh, Jae-seon
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.447-457
    • /
    • 2015
  • Objectives: This study was undertaken to investigate how Cortex Phellodendri affects metabolic functional change in an experimental rat model of obesity.Methods: An obesity model was induced in a C57BL/6 mouse with a high-fat diet. Mice were divided into three groups (n=6) of normal diet, high-fat diet (=control), and high-fat diet with Cortex Phellodendri. After 12 weeks, we measured the three mice groups’ body weight, FBG, FBI, HOMA-IR, OGTT, the weight of epididymal fat and liver, the percentage of ATM, and the gene expression of TNF-α, IL-10, and CD68.Results: Cortex Phellodendri significantly reduced blood glucose and oral glucose tolerance levels. It also reduced ATM numbers and TNF-α and CD68 gene expression and increased IL-10 gene expression.Conclusions: This study suggests that Cortex Phellodendri normalized the blood glucose and reduced the expression of inflammatory markers. However, with respect to other indicators of metabolic function in obesity, there were no significant results.

Difference in the Gut Microbiome between Ovariectomy-Induced Obesity and Diet-Induced Obesity

  • Choi, Sungmi;Hwang, Yu-Jin;Shin, Min-Jeong;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2228-2236
    • /
    • 2017
  • During menopausal transition, the imbalance of estrogen causes body weight gain. Although gut microbiome dysbiosis has been reported in postmenopausal obesity, it is not clear whether there is any difference in the microbiome profile between dietary-induced obesity and postmenopausal obesity. Therefore, in this study, we analyzed intestinal samples from ovariectomized mice and compared them with those of mice with high-fat diet-induced obesity. To further evaluate the presence of menopause-specific bacteria-gene interactions, we also analyzed the liver transcriptome. Investigation of the 16S rRNA V3-V4 region amplicon sequence profile revealed that menopausal obesity and dietary obesity resulted in similar gut microbiome structures. However, Bifidobacterium animalis was exclusively observed in the ovariectomized mice, which indicated that menopausal obesity resulted in a different intestinal microbiome than dietary obesity. Additionally, several bacterial taxa (Dorea species, Akkermansia muciniphila, and Desulfovibrio species) were found when the ovariectomized mice were treated with a high-fat diet. A significant correlation between the above-mentioned menopause-specific bacteria and the genes for female hormone metabolism was also observed, suggesting the possibility of bacteria-gene interactions in menopausal obesity. Our findings revealed the characteristics of the intestinal microbiome in menopausal obesity in the mouse model, which is very similar to the dietary obesity microbiome but having its own diagnostic bacteria.

The Effect of Ephedra sinica Pharmacopuncture on Lipid Metabolism in an Experimental Mouse Model of Obesity (마황약침(麻黃藥鍼)이 비만 유발 생쥐의 지방대사에 미치는 영향)

  • Kim, Hyo-jae;Kim, Eun-ji;Han, Yang-hee
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.4
    • /
    • pp.579-590
    • /
    • 2016
  • Objectives: This study aimed to investigate the impact of Ephedra sinica pharmacopuncture on the weight and lipid metabolism of obese mice.Methods: Obesity was induced in male C57BL/6 mice by a 60% fat diet. The animals were divided into three groups (n=5) fed a normal diet, high-fat diet, and high-fat diet with Ephedra sinica pharmacopuncture. After 13 wk, fasting blood sugar levels were measured in each group, and oral glucose tolerance tests were conducted. After 15 wk, body weight, epididymal fat pad weight, subcutaneous fat pad weight, and serum lipid and gene expression of hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL), monoacylglycerol lipase (MGL), perilipin, and peroxisome proliferator-activated receptor (PPAR)-γ were measured in each group.Results: In the Ephedra group, body weight, fasting blood sugar, and oral glucose tolerance were significantly decreased. In addition, in the Ephedra group, the gene expression of HSL was significantly increased, whereas that of perilipin was significantly decreased.Conclusions: These results provide evidence that E. sinicapharmacopuncture affects obesity and obesity-induced metabolic syndrome, including insulin resistance and dyslipidemia, by activating lipolysis via the HSL pathway in adipose tissue.