Browse > Article

Effects of Cortex Phellodendri on the Metabolic Function in Experimental Mouse Model of Obesity  

Ma, Young-hoon (Dept. of Oriental Internal Medicine, Dong-Shin Oriental Medical Hospital)
Kim, Hyo-jae (Dept. of Oriental Internal Medicine, Dong-Shin Oriental Medical Hospital)
Han, Yang-hee (Dept. of Oriental Internal Medicine, Dong-Shin Oriental Medical Hospital)
Kim, Han-ok (Dept. of Oriental Internal Medicine, Dongseo Oriental Medical Hospital)
Oh, Jae-seon (Dept. of Oriental Internal Medicine, Dong-Shin University Mok-Po Oriental Medical Hospital)
Publication Information
The Journal of Internal Korean Medicine / v.36, no.4, 2015 , pp. 447-457 More about this Journal
Abstract
Objectives: This study was undertaken to investigate how Cortex Phellodendri affects metabolic functional change in an experimental rat model of obesity.Methods: An obesity model was induced in a C57BL/6 mouse with a high-fat diet. Mice were divided into three groups (n=6) of normal diet, high-fat diet (=control), and high-fat diet with Cortex Phellodendri. After 12 weeks, we measured the three mice groups’ body weight, FBG, FBI, HOMA-IR, OGTT, the weight of epididymal fat and liver, the percentage of ATM, and the gene expression of TNF-α, IL-10, and CD68.Results: Cortex Phellodendri significantly reduced blood glucose and oral glucose tolerance levels. It also reduced ATM numbers and TNF-α and CD68 gene expression and increased IL-10 gene expression.Conclusions: This study suggests that Cortex Phellodendri normalized the blood glucose and reduced the expression of inflammatory markers. However, with respect to other indicators of metabolic function in obesity, there were no significant results.
Keywords
Cortex Phellodendri; obesity; blood glucose; anti-inflammatory; metabolic fuction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999;282(22):2131-5.   DOI
2 Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115(5):1111-9.   DOI
3 강지혜, 유리나. 비만성 염증/대사질환 제어를 위한 기능성 식품성분의 활용 가능성. 대한비만학회지 2012;21(3):132-9.
4 박철영, 유형준. 염증과 비만. 대한내분비학회지 2004;19(2):97-108.
5 양유걸. 黃帝內經靈樞解釋. 서울: 성보사; 1980, p. 304, 416.
6 편집부 저. 완역중약대사전. 서울: 도서출판 정담; 2006, p. 5052-5.
7 박철원, 김갑성. Lipopoly saccharide 유발 토끼관절염에서 黃柏藥鍼이 관절염증의 억제에 미치는 영향. 대한침구학회지 1998;15(1):229-48.
8 김경희, 안순철, 이명선, 권오송, 오원근, 김민수, 등. 황백(Phellodendri Cortex)으로부터 분리된 지방세포 분화 저해물질. 한국식품과학회지 2003;35(3):503-9.
9 김소희, 신은정, 현창기. 3T3-L1 지방세포에서 황백 추출물의 Glucose Uptake 촉진 및 인슐린 저항성 개선 활성. 생약학회지 2005;36(4):291-8.
10 김대영, 이수진, 안의수, 강현식. 유산소 운동이 아디포넥틴 유전자 다형성에 따른 비만관련 대사증후군 위험인자의 반응에 미치는 영향. 운동영양학회지 2008;12(3):169-76.
11 Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. JCI 2003;112(12):1796-808.   DOI
12 구승회. 대사질환-비만과 대사증후군 및 당뇨병에 관한 최신 연구를 중심으로 한 고찰. 생화학분자생물학뉴스 2010;30(4):29-36.
13 한의과대학 본초학 편찬위원회. 本草學. 서울: 영림사; 2000, p. 223-4.
14 윤석희, 김형준 외 옮김. 동의보감. 경상남도 하동군: 동의보감 출판사; 2005, p. 1457, 2218.
15 이문조, 박진우, 김동수, 김준기, 최달영, 김철호. 황백 열수추출물의 항산화활성과 아질산염 소거작용에 관한 연구. 대한동의병리학회지 1999;13(1):112-8.
16 이종구, 최지영, 오준석, 정희욱, 최은향, 이희상, 등. 황백(黃柏)으로부터 멜라닌 생합성 억제 물질의 분리. 생약학회지 2007;38(4):477-83.
17 곽동주. 황백(Phellodendri Cortex) 추출물이 구강균 Streptococcus mutans의 증식에 미치는 영향. 한국위생과학회지 2004;10(2):99-107.
18 김재영, 이현. 황백약침이 콜라겐 유도 관절염생쥐에 미치는 영향. 대한경락경혈학회지 2007;24(2):163-84.
19 DCW Lau. Diabetes and weight management. PCD 2010;4(1):24-30.
20 Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity. Diabetes Care 2000;23(1):57-63.   DOI
21 김정한. 당뇨병의 진단과 경구 당부하검사. 한국당뇨협회지 2005;5(1):34-6.
22 Mallat Z, Heymes C, Ohan J, Faggin E, Lesèche G, Tedgui A. Expression of interleukin-10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death. ATVB 1999;19(1):611-6.
23 Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010;140(2):197-208.   DOI
24 Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. PNS 2010;69(2):232-43.   DOI
25 Hotamisligil GS, Spiegelman BM. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes 1994;43(1):1271-8.