Browse > Article
http://dx.doi.org/10.4014/jmb.1710.10001

Difference in the Gut Microbiome between Ovariectomy-Induced Obesity and Diet-Induced Obesity  

Choi, Sungmi (Department of Public Health Sciences, Graduate School, Korea University)
Hwang, Yu-Jin (Department of Agrofood Resources, National Institute of Agricultural Science, RDA)
Shin, Min-Jeong (Department of Public Health Sciences, Graduate School, Korea University)
Yi, Hana (Department of Public Health Sciences, Graduate School, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.12, 2017 , pp. 2228-2236 More about this Journal
Abstract
During menopausal transition, the imbalance of estrogen causes body weight gain. Although gut microbiome dysbiosis has been reported in postmenopausal obesity, it is not clear whether there is any difference in the microbiome profile between dietary-induced obesity and postmenopausal obesity. Therefore, in this study, we analyzed intestinal samples from ovariectomized mice and compared them with those of mice with high-fat diet-induced obesity. To further evaluate the presence of menopause-specific bacteria-gene interactions, we also analyzed the liver transcriptome. Investigation of the 16S rRNA V3-V4 region amplicon sequence profile revealed that menopausal obesity and dietary obesity resulted in similar gut microbiome structures. However, Bifidobacterium animalis was exclusively observed in the ovariectomized mice, which indicated that menopausal obesity resulted in a different intestinal microbiome than dietary obesity. Additionally, several bacterial taxa (Dorea species, Akkermansia muciniphila, and Desulfovibrio species) were found when the ovariectomized mice were treated with a high-fat diet. A significant correlation between the above-mentioned menopause-specific bacteria and the genes for female hormone metabolism was also observed, suggesting the possibility of bacteria-gene interactions in menopausal obesity. Our findings revealed the characteristics of the intestinal microbiome in menopausal obesity in the mouse model, which is very similar to the dietary obesity microbiome but having its own diagnostic bacteria.
Keywords
Microbiome; menopause; obesity; ovariectomy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, et al. 1988. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241: 84-86.   DOI
2 Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson JB, Clarke AC. 1976. Long-term prevention of postmenopausal osteoporosis by oestrogen. Evidence for an increased bone mass after delayed onset of oestrogen treatment. Lancet 1: 1038-1041.
3 Riggs BL, Khosla S, Melton LJ 3rd. 1998. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13: 763-773.   DOI
4 Paganini-Hill A, Henderson VW. 1994. Estrogen deficiency and risk of Alzheimer's disease in women. Am. J. Epidemiol. 140: 256-261.   DOI
5 Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, et al. 2005. Brain estrogen deficiency accelerates $A{\beta}$ plaque formation in an Alzheimer's disease animal model. Proc. Natl. Acad. Sci. USA 102: 19198-19203.   DOI
6 Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.   DOI
7 Rabot S, Membrez M, Blancher F, Berger B, Moine D, Krause L, et al. 2016. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci. Rep. 6: 32484.   DOI
8 Liu TW, Park YM, Holscher HD, Padilla J, Scroggins RJ, Welly R, et al. 2015. Physical activity differentially affects the cecal microbiota of ovariectomized female rats selectively bred for high and low aerobic capacity. PLoS One 10: e0136150.   DOI
9 Keenan MJ, Janes M, Robert J, Martin RJ, Raggio AM, McCutcheon KL, et al. 2013. Resistant starch from high amylose maize (HAM-RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats. Obesity 21: 981-984.   DOI
10 Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. 2009. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137: 1716-1724.e1-2.   DOI
11 Turnbaugh PJ, Baeckhed F, Fulton L, Gordon JI. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213-223.   DOI
12 Ainslie DA, Morris MJ, Wittert G, Turnbull H, Proietto J, Thorburn AW. 2001. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int. J. Obes. Relat. Metab. Disord. 25: 1680-1688.   DOI
13 Lovejoy JC, Champagne CM, d e Jonge L, X ie H , Smith SR. 2008. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 32: 949-958.   DOI
14 Shimizu H, Shimomura Y, Nakanishi Y, Futawatari T, Ohtani K, Sato N, et al. 1997. Estrogen increases in vivo leptin production in rats and human subjects. J. Endocrinol. 154: 285-292.   DOI
15 Carr MC. 2003. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 88: 2404-2411.   DOI
16 Dosi R, Bhatt N, Shah P, Patell R. 2014. Cardiovascular disease and menopause. J. Clin. Diagn. Res. 8: 62-64.
17 Hu FB, Grodstein F, Hennekens CH, Colditz GA, Johnson M, Manson JE, et al. 1999. Age at natural menopause and risk of cardiovascular disease. Arch. Intern. Med. 159: 1061-1066.   DOI
18 Sarvari M, Kallo I, Hrabovszky E, Solymosi N, Liposits Z. 2014. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One 9: e88540.   DOI
19 Krebs CJ, Jarvis ED, Pfaff DW. 1999. The 70-kDa heat shock cognate protein (Hsc73) gene is enhanced by ovarian hormones in the ventromedial hypothalamus. Proc. Natl. Acad. Sci. USA 96: 1686-1691.   DOI
20 Ramezani Tehrani F, Behboudi-Gandevani S, Ghanbarian A, Azizi F. 2014. Effect of menopause on cardiovascular disease and its risk factors: a 9-year follow-up study. Climacteric 17: 164-172.   DOI
21 Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071.   DOI
22 Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63: 727-735.   DOI
23 Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. 2002. Postmenopausal hormone replacement therapy: scientific review. JAMA 288: 872-881.   DOI
24 DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072.   DOI
25 Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.   DOI
26 Hamady M, Lozupone C, Knight R. 2010. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4: 17-27.   DOI
27 Coylewright M, Reckelhoff JF, Ouyang P. 2008. Menopause and hypertension: an age-old debate. Hypertension 51: 952-959.   DOI
28 Rappelli A. 2002. Hypertension and obesity after the menopause. J. Hypertens. Suppl. 20: S26-S28.
29 Hummelen R, Macklaim JM, Bisanz JE, Hammond JA, McMillan A, Vongsa R, et al. 2011. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS One 6: e26602.   DOI
30 Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. 2014. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause 21: 450-458.   DOI
31 Cauci S, Driussi S, De Santo D, Penacchioni P, Iannicelli T, Lanzafame P, et al. 2002. Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women. J. Clin. Microbiol. 40: 2147-2152.   DOI
32 Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, et al. 2014. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 99: 4632-4640.   DOI
33 Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. 2012. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J. Transl. Med. 10: 253.   DOI
34 Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45: D353-D361.   DOI
35 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.   DOI
36 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.   DOI
37 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29.   DOI
38 The R project for statistical computing. Available from http://www.r-project.org. Accessed 18 September 2017.
39 Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2: 2366-2382.   DOI
40 Cox-York KA, Sheflin AM, Foster MT, Gentile CL, Kahl A, Koch LG, et al. 2015. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats. Physiol. Rep. 3: e12488.   DOI
41 Lawley B, Tannock GW. 2017. Analysis of 16S rRNA gene amplicon sequences using the QIIME software package. Methods Mol. Biol. 1537: 153-163.
42 Menon R, Watson SE, Thomas LN, Allred CD, Dabney A, Azcarate-Peril MA, et al. 2013. Diet complexity and estrogen receptor beta status affect the composition of the murine intestinal microbiota. Appl. Environ. Microbiol. 79: 5763-5773.   DOI
43 McKinlay SM, Brambilla DJ, Posner JG. 1992. The normal menopause transition. Maturitas 14: 103-115.   DOI
44 Kwa M, Plottel CS, Blaser MJ, Adams S. 2016. The intestinal microbiome and estrogen receptor-positive female breast cancer. J. Natl. Cancer Inst. 108: djw029.
45 Brahe L K, L e Chatelier E, P rifti E, P ons N, K ennedy S, Hansen T, et al. 2015. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr. Diabetes 5: e159.   DOI