• 제목/요약/키워드: high efficiency driving method

검색결과 149건 처리시간 0.024초

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권5호
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

AC PDP의 무효전력 감소를 위한 CLHS 구동 방법 (CLHS Driving Method for Reducing Reactive Power Consumption in AC PDP)

  • 신재화;김근수
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.577-583
    • /
    • 2011
  • In AC-PDP, it is necessary to achieve high luminance efficiency, high luminance and high definition by adopting technologies such as high xenon concentration and long gap. However, it is very difficult to apply above technologies because they make many problems such as mis-discharge and high driving voltage. Especially, the reactive power of PDP must be reduced for satisfaction in international standard IEC62087. In this paper, we proposed CLHS driving method which is half sustain driver without energy recovery capacitor. In the experimental results, CLHS driving method reduced reactive power consumption about 10%. Also, CLHS driving method improved the luminance efficiency in all discharge loads. Therefor, the more the discharge load decreases, the more the luminance efficiency improves. When the discharge load is 20%, CLHS driving method improved 5.35%.

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권6호
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

AC PDP에서 CLHS 구동 방법에 의한 ITO Gap에 따른 방전 특성 (The Characteristics of the Discharge According to ITO Gap by the CLHS Driving Method in AC PDP)

  • 신재화;최명규;김근수
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.83-89
    • /
    • 2013
  • In order to reduce the power consumption in international standard IEC62087, the luminance efficiency should be improved at the low discharge load rather than at the high discharge load. Thus, this paper analysed the characteristics of the discharge at the panels with ITO Gap of $65{\mu}m$, $80{\mu}m$, and $100{\mu}m$ in 50-inch PDP with FHD resolution. It was well known that the long gap panel improves the luminance and the luminous efficiency. However, it is very difficult to drive the panel due to high driving voltage. When the normal driving method was applied at the panel with ITO gap of $100{\mu}m$, the phenomenon of the double peak was generated in the sustain period. We confirmed that main factor of the double peak is the self-erasing discharge. When the CLHS driving method was applied at the panel with ITO gap of $100{\mu}m$, the self-erasing discharge was improved in the sustain period. Also, the $V_S$ and $V_A$ minimum voltage of the CLHS driving method decreased about 9V and 12V compared with those of the normal driving method. Moreover, when the CLHS driving method was applied to the panel with ITO gap of $100{\mu}m$, the luminance and the luminous efficiency increased compared with those of the normal driving method. The luminance and the luminous efficiency greatly increased at the low discharge load. The less discharge load, the higher increase rate of the luminance and the luminous efficiency. Especially, the luminous efficiency at ITO gap of $100{\mu}m$ increased about 26.3% at the discharge load of 4% compared with that at ITO gap of $65{\mu}m$.

On the Cell Structure and Driving Method for High Efficiency Plasma Display Panel

  • Lee, Ho-Jun;Ok, Jung-Woo;Lee, Don-Kyu;Lee, Ji-Hoon;Lee, Hae-June;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1479-1482
    • /
    • 2006
  • Potentials and advantages of recently proposed raised bus electrode plasma display panel is discussed in terms of luminous efficiency, addressing speed. Detailed experimental and simulation results, which shows mechanisms of high efficiency driving mechanism, will also be given. Apart from the cell structure, we introduce new high efficiency driving method that can be applicable to conventional ac Plasma Display Panel.

  • PDF

Optimization of Bidirectional DC/DC Converter for Electric Vehicles Based On Driving Cycle

  • Yutao, Luo;Feng, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1934-1944
    • /
    • 2017
  • As a key component of high-voltage power conversion system for electric vehicles (EVs), bidirectional DC/DC (Bi-DC/DC) is required to have high efficiency and light weight. Conventional design methods optimize the Bi-DC/DC at the maximum power dissipation point (MPDP). For EVs application, the work condition of the Bi-DC/DC is not strict as the MPDP, where the design method using MPDP may not be optimal during travel of EVs. This paper optimizes the Bi-DC/DC converter targeting efficiency and weight based on the driving cycle. By analyzing the two-phase interleaved Bi-DC/DC for hybrid energy storage systems (HESS) of EVs, its power dissipation is calculated, and an efficiency model is derived. On this basis, weight models of capacitor, inductor and heat sink are built, as well as a dynamic temperature model of heat sink. Based on these models, a method using New European Driving Cycle (NEDC) for optimal design of Bi-DC/DC which simultaneously considered efficiency and weight is proposed. The simulation result shows that compare with conventional optimization methods revealed that the optimization approach based on driving cycle allowed significant weight reduction while meeting the efficiency requirements.

전압 극성 전환을 통한 피에조 소자의 에너지 회수형 구동 기법 연구 (Study on High-Efficiency Driving of a Piezo Device Using Voltage Inversion Circuit)

  • 박한빈;박진호;홍선기;강태삼
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1843-1847
    • /
    • 2012
  • Piezo devices have large power density and simple structure. They can generate larger force than the conventional actuators. It has also wide bandwidth with fast response in a compact size. Thus the piezo devices are expected to be used widely in the future for small actuators with fast response time and large actuating force. However, the piezo actuators need high voltage with high driving current due to their large capacitive property. In this paper, we propose a simple method to drive piezo devices using voltage inversion circuit with coil inductance. Experiments with real circuit demonstrates that the proposed scheme can improve the energy efficiency very much.

의사 DC 방전용 형광등 전자 안정기에 관한 연구 (A Study on Pseudo DC Discharging Electronic Bal lasts for Fluorescent Lamp)

  • 이범익;정화진;지철근
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1992년도 추계학술발표회논문집
    • /
    • pp.11-15
    • /
    • 1992
  • Currently-using low-pressure lamps are usually drivel by the AC power supply. There are good and bad points according to high or low frequency in AC power driving type. For the low-pressure lamps, its efficiency increases and flicker decreases when it ignites at high frequency. So we already use the high-frequency electronic ballast of the low-pressure discharge lamps broadly. But there are EMI interference in high-frequency driving type because of giving the fluorescent lamp the high- frequency current. So recently, we have a tendency to compensate for that defects by DC driving method. As follows, we suggest pseudo DC discharging electronic bar lasts for fluorescent lamps which have the characteristics of high efficiency and no flicker by driving constant current boosted square wave.

  • PDF

전기자동차의 연비향상을 위한 매입형 영구자석 동기전동기의 효율특성 분석 (Analysis on Efficiency Characteristics of IPMSM for fuel Economy Improve of Electric Vehicle)

  • 김종희;김기찬;이대동
    • 한국융합학회논문지
    • /
    • 제9권4호
    • /
    • pp.1-7
    • /
    • 2018
  • 전기자동차용 전동기는 운전모드에 따라 효율특성이 차이가 나기 때문에 저속 및 고속의 운전모드에서 고효율특성을 평가하기 위한 연구는 매우 중요하다. 따라서 전기자동차 구동용 전동기의 고토크 및 고출력 밀도, 고효율특성을 변경할 수 있는 설계 방안이 필요하다. 본 논문에서는 매입형 영구자석 동기전동기의 고정자와 회전자의 직경비를 각각 0.62, 0.65, 0.68로 변경 설계하여 전 운전구간의 효율특성과 시내 및 고속도로 운전모드에서의 평균효율특성을 분석하였다. 전 운전구간의 효율특성을 분석한 결과, 직경비가 증가할수록 고효율 구간이 저속 저토크 구간으로 이동하고, 직경비가 감소할수록 고효율 구간이 고속 저토크 부근으로 이동함을 확인하였다. 시내 및 고속도로 운전모드에서의 평균효율특성을 분석한 결과, 직경비 0.68 모델이 직경비 0.63 및 0.65 모델보다 평균효율이 높게 분석되었으며 시내 및 고속도로 주행모드에 적합함을 확인하였다.

AC PDP에서 고속 어드레싱을 위한 ADR(Address During Reset) 구동 방식 (The ADR(Address During Reset) Driving Method for High-Speed Addressing in an AC-PDP)

  • 송근영;김근수;이석현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.269-273
    • /
    • 2005
  • In order to achieve high efficiency and low cost, new high-speed addressing method is suggested. This can be implemented by reducing the address discharge time lag through the priming effect. This paper suggests a new ADR(Address During Reset) driving method which provides priming particles by a separated driving method without adding auxiliary electrode or auxiliary discharge. The experimental results show an approximately 100ns reduction in the formative delay time of address discharge and a reduction in jitter of over 200ns. Also, due to enough time being available for reset, there was a reduction of about 29$\%$ in linht emitted during the reset period considerably.