• 제목/요약/키워드: high early strength concrete

검색결과 461건 처리시간 0.024초

PC계 혼화제 사용 콘크리트의 조강특성 및 내구특성에 대한 연구 (A Study on the Properties of High Early Strength & Durability of Concrete using PC Admixture)

  • 문수동;이상호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.467-470
    • /
    • 2005
  • This study reports the properties of high early strength & durability of concrete using PC admixture. To apply these data to construction site, we did the lab tests. The target of this study is to accomplish early strength of concrete(5.0 MPa/18 hr), and we did the durability tests such as length change test, chloride ion penetration test, adiabatic test, etc. PC type was more excellent than PNS type admixture. According to these tests, we concluded that we can apply this type of PC admixture to the civil & construction site, and we can reduce the term of works and finally we can accomplish the economical construction.

  • PDF

조강형 Latex Modified Concrete를 이용한 교량상판면 보수용 Overlay Concrete 제조 및 적용에 관한 연구 (Manufacture and Applicasion of High-Early Strength Latex-Modified Concrete to Resurface and Repair Bridge Decks)

  • 엄태선;임채용;백상현;이승재;조윤호;엄주용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.485-490
    • /
    • 2000
  • Because of occuring easily the crack, debond, lutting on asphalts pavement of bredge decks under traffic's heavy weigt load. We investigated the application of latex modified concrete to resurface and repaire bridge decks for preventing the above problems. Here, Using the ordinary portland cement and high early cement, We rested mix design, workability, compressive strength, adhesive power, drying shrinkage, carbonation, and economic estimation etc. We selected the condition of application to resurface and repaire bridge decks and detected high early cement is superior to ordinary portland cement in results of analyzing the application of the repairing bridge decks and economic estimations.

  • PDF

VES-LMC 덧씌우기를 이용한 콘크리트 포장 보수 (Rehabilitation of Concrete Pavement with VES-LMC overlay)

  • 정원경;김용곤;김기헌;윤경구
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.3-10
    • /
    • 2005
  • Since in 1970, the length of concrete pavements(JCP, JRCP and CRCP) are growing rapidly at both of main highways and local roads. Many of them are deteriorated and old enough to be repaired or replaced. The pavement is more important than the other infrastructures and it is very difficult to go around or block the traffic during the rehabilitation. The very-early strength latex-modified concrete(VES-LMC)may offer the advantages of high-early-strength, higher flexural strength, higher bond strength, and improved durability. The VES-LMC could be used at a kind of fast track ofr early opening to the traffic after 3 hours of concrete placement. The installation of VES-LMC overlay at Jung-Boo highway was successfully done from April 28 to 29, 2005. The traffic was closed at 07:00 PM and opened to traffic at 08:30 AM. The compressive and flexural strength of VES-MC were more than 28MPa, 6.2MPa after 4 hours, respectively.

  • PDF

양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향 (Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash)

  • 한민철;신병철
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

초기재령 콘크리트의 부등건조수축과 자기수축에 관한 연구 (Differential Drying Shrinkage and Autogenous Shrinkage of Concrete at Early Ages)

  • 김진근;이칠성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.309-314
    • /
    • 1998
  • The moisture diffusion and self-desiccation cause the differential drying shrinkage and autogenous shrinkage at early ages, respecitvely. Thus total shrinkage strain includes the differential drying shrinkage and self-desiccation shrinkage. Thus in this study the shrinkage strain was measured at various positions in the exposed concrete and in the sealed concrete the self-desiccation shrinkage was measured. In low-strength concrete, the differential drying shrinkage increases very rapidly, but self-desiccation shrinkage is very small. But high-strength concrete shows the reverse result. And the analytical results for differential drying shrinkage were in good agreement with the test results.

  • PDF

초속경라텍스개질콘크리트의 초기수축 (Early-Age Shrinkage of Very-Early Strength Latex Modified Concrete)

  • 이정호;최판길;최승식;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.269-272
    • /
    • 2004
  • After concrete casts, temperature decent and shrinkage bring volume changes of concrete pavement. Microcracking and cracking in concrete pavement are caused by these volume changes. As a result, durability of concrete pavement is deteriorated. Recently, Very-Early Strength Latex Modified concrete(below:VESLMC) from the beginning of High-Way is used as urgent repair material for bridge deck. The advantage of VESLMC is that compressive and flexural strength at 3 hours age are 4.5MPa and 21MPa respectively. It allows the traffic to open in 3 hours. But, this material has the problem which is early-age shrinkage cracking caused by water self-dissipation with rapid hydration reaction and water evaporation with body dry. Unfortunately, until now, the research about early-age shrinkage of VESLMC leaves something to be desired. Therefore, the purpose of this study is to present the early-age shrinkage of VESLMC respect to latex contents and shrinkage ratio to maximum length change that can help field engineers' skill. Latex contents of 0, 5, 10, 15, $20\%$ in standard of same workability in VESLMC are selected by experimental variables. After initial set, shrinkage value was measured with 10mm LVDT for 3 days. The results of maximum shrinkage ratio were 0.019, 0.017, 0.023, $0.027\%$ respectively.

  • PDF

적산온도에 의한 고강도콘크리트의 압축강도 예측에 관한 실험적 연구 (An Experimental Study on the Compressive Strength Prediction of High-Strength Concrete by Maturity)

  • 길배수;조민형;전진환;남재현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.225-231
    • /
    • 1996
  • Prediction of the early-stage strength of concrete is useful for modernized concrete construction. An experiment was attempted on the high-strength of concrete produced by ordinary portland cement under the curing temperatures of 30, 20, $10^{\cire}C$ and the various mixing proportions such as water-binder ratio of 0.30, 0.35 and silica fume content of 10% by weight of cement. It is the aim of this study to investigare and compare the development of concrete strength with maturity and analyze the application of Maturity as a parameter to correlation estimate test results of concrete. They are statistically analyzed to infer the correlation coefficient between the Maturity and the compressive strength of high-strength concrete.

  • PDF

플라이애시를 대량 사용한 콘크리트의 특성에 관한 실험적 연구 (An Experimental Study on the Properties of High Volume Fly Ash Concrete)

  • 최세진;장종호;최성우;최희용;박선규;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.549-554
    • /
    • 2000
  • Generally, it is indicated that concrete using fly ash as a part of cement content has lower early strength, and faster carbonation velocity. To improve these problems and provide useful information for high volume fly ash concrete, the properties of concrete - those include slump, bleeding, setting time, compressive strength and carbonation depth etc. - which contained large amount of fly ash as a part of fine aggregate were investigated experimentally. According to test results, it was found that the compressive strength of the concrete increased in early age as well as in long term age with the increase of the fly ash content. And the carbonation depth of concrete using fly ash as a part of fine aggregate was lower than that of plain concrete(FA 0kg/ $\textrm{m}^3$).

  • PDF

모르타르의 조기강도 발현 특성에 미치는 혼화재 종류의 영향에 관한 연구 (A Study on the Influence of Kinds of Mineral Admixture on the Properties of Early-Strength Development of Mortar)

  • 김성수;최세진;정용;이성연;김동석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.889-892
    • /
    • 2006
  • In this study, we compared and analysed the early strength properties of mortar according to the kinds and replacement ratio of mineral admixture to select the kinds and replacement ratio of mineral admixture of high early strength concrete. For this purpose, mortar mixtures according to the kinds(FA, MK, ZR, BFS, DM) and replacement ratio(0, 2, 4% by volume of sand) of mineral admixture were selected. From our test data, early-age compressive strength decreased in accordance with the increase of replacement ratio of fly-ash(FA) & blast furnace slag powder(BSF) and, in case of addintion admixture, early-age compressive strength of with containing ZR & BFS appeared higher compared with containing other mineral admixture.

  • PDF

Study on the Fluidity and Strength Properties of High Performance Concrete Utilizing Crushed Sand

  • Park, Sangjun
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.231-237
    • /
    • 2012
  • Recently, it has been difficult to get natural sand for concrete due to an insufficient supply in Korea. Crushed sand was thought as a substitute and previous research has been focused on low fluidity and normal compressive strength (24-30 MPa). Study on high performance concrete using crushed sand is hardly found in Korea. In this study it was investigated that the effect of the crushed sand on fluidity and compressive strength properties of high performance concrete. Blending crushed sand (FM: 3.98) produced in Namyangju, Kyunggido and sea sand (FM: 2.80) produced in Asan bay in Chungnam. The final FMs of fine aggregate were 3.50, 3.23, and 3.08. W/B was set as 0.25 to get high performance. With the test results an analysis of relationship was performed using a statistical program. It was shown that strength property of concrete using crushed aggregate at the very early age or after specific time was mainly affected by strength development properties of binders instead of the crushed sand.