• Title/Summary/Keyword: high Reynolds number

Search Result 469, Processing Time 0.027 seconds

Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model (저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석)

  • Choi, Chang Ho;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

A Numerical Study of the Heat Transfer Characteristics in a Printed Circuit Board (PCB내의 열전달특성에 관한 수치적 연구)

  • Pak, H.Y.;Park, K.W.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.461-472
    • /
    • 1995
  • The interaction of laminar mixed convection and surface radiation in a two-dimensional channel with an array of rectangular blocks is analyzed numerically. Three blocks are maintained at high temperature and the other bottom and top horizontal walls are insulated. Discrete ordinate method(DOM) is introduced to analyze the radiative heat transfer. The effects of the variations of Reynolds number and channel specifications on the heat transfer characteristics are investigated. The average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number and dimensionless geometric parameters such as the block spacing, height and channel spacing. For the conditions considered in this study, average Nusselt numbers along the block surfaces are strongly influenced by the channel spacing and Reynolds number but weakly influenced by the block spacing and block height.

  • PDF

Effects of dimple/protrusion array on heat transfer coefficients in rectangular wavy duct (주름진 덕트에서 딤플/돌출 형상이 열전달계수에 미치는 영향)

  • Kwon, Hyun-Goo;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2352-2356
    • /
    • 2008
  • Heat transfer and performance characteristics have been investigated for a rectangular wavy duct with dimple or protrusion arrays. The test duct was 15mm in height and 105mm wide. The print diameter of the dimple/protrusion wall was 12.99mm and the depth/height of the dimple/protrusion was 3.75mm. Local heat transfer coefficients on the dimple/protrusion wall were measured using a transient TLC technique. The Reynolds number was varied from 3,000 to 10,000. For the wavy duct tested in this study, adverse static pressure characteristics occurred at turning region of the wavy duct due to secondary flows. For the wavy duct with protrusion array, higher heat transfer enhancement level of 7.4 times than smooth straight case in maximum was obtained at low Reynolds number due to the high heat transfer enhancement by vortex flows. Also, the protrusion array increased the performance level of 3.0 at low Reynolds number of 3,000.

  • PDF

Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers (레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화)

  • Lee, Seung Ho;Yoon, Ja Geol;Kwon, Soon Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • The objective of present study is to investigate the sensitivity of aerostatic force coefficients of twin box girder of Yi Sun-sin Bridge according to the Reynolds numbers. This paper presents the 1:30 scale sectional model tests conducted at high speed wind tunnel in Korea Air Force Academy. Comparison with results at low Reynolds number obtained in KOCED Wind Tunnel Center in Chonbuk National University is also provide. The Reynolds number dependency of aerodynamic force coefficients were observed at present streamlined twin box girder. The drag coefficient revealed significant decrease of nearby 23% at supercritical region. The boundary layer trip strip was found to reduce the Reynolds number dependency of aerodynamic forces by fixing the location of flow transition.

HIGH-ORDER WEIGHTED DIFFERENCE SCHEMESTHE CONVECTION-DIFFUSION PROBLEMS

  • Choo, S.M.;Chung, S.K.;Kim, Y.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.4
    • /
    • pp.815-832
    • /
    • 1999
  • High-order weighted difference schemes with uniform meshes are considered for the convection-diffusion problem depending on Reynolds numbers. For small Reynolds numbers, a weighed cen-tral difference scheme is suggested since there is no boundary layer. For large Reynolds numbers, we propose a modified up wind method with an artificial diffusion in order to overcome nonphysical oscilla-tion of central schemes and obtain good accuracy in the boundary later. Existence and corresponding error estimates of the solution for the difference scheme have been shown. Numerical experiments are provided to back up the analysis.

  • PDF

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area (초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석)

  • Shin, Ho-Cheol;Park, Soo-Hyung;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.367-375
    • /
    • 2017
  • RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

Large Eddy Simulation of a High Reynolds Number Swirling Flow in a Conical Diffuser

  • Duprat, Cedric;Metais, Olivier;Laverne, Thomas
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.346-352
    • /
    • 2009
  • The objective of the present work is to improve numerical predictions of unsteady turbulent swirling flows in the draft tubes of hydraulic power plants. We present Large Eddy Simulation (LES) results on a simplified draft tube consisting of a straight conical diffuser. The basis of LES is to solve the large scales of motion, which contain most of the energy, while the small scales are modeled. LES strategy is here preferred to the average equations strategies (RANS models) because it resolves directly the most energetic part of the turbulent flow. LES is now recognized as a powerful tool to simulate real applications in several engineering fields which are more and more frequently found. However, the cost of large-eddy simulations of wall bounded flows is still expensive. Bypass methods are investigated to perform high-Reynolds-number LES at a reasonable cost. In this study, computations at a Reynolds number about 2 $10^5$ are presented. This study presents the result of a new near-wall model for turbulent boundary layer taking into account the streamwise pressure gradient (adverse or favorable). Validations are made based on simple channel flow, without any pressure gradient and on the data base ERCOFTAC. The experiments carried out by Clausen et al. [1] reproduce the essential features of the complex flow and are used to develop and test closure models for such flows.

Performance Test of Turbine Flowmeter According to Temperature Variation (온도변화에 따른 터빈유량계의 성능 시험)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.47-52
    • /
    • 2017
  • In general industry, TFM(turbine flow meters) as measuring instruments having high reliability are widely used in the trade of petroleum and in the measurement of tap water and hot water. The TFM is performed calibration for using in the field and is mainly calibrated at room temperature. Since accuracy of TFM depends on Reynolds number of fluid, TFM is calibrated at same Reynolds number by changing flow rate. Furthermore, the TFM using a fluid of high temperature should have considered for other factors such as the thermal expansion of the parts and characteristics change is unknown changes in the turbine flow meter accordingly. In this paper, two turbine flowmeter are experimentally studied about characteristics change using the facilities which can change fluid temperature from 6 degree celsius to 90 degree celsius. As a result, the turbine flow meter can be calibrated to minimize the error characteristic at a similar temperature and the actual temperature.

Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers (직관 마이크로채널 PCHE의 열전달특성 및 압력강하)

  • Kim, Yoon-Ho;Seo, Jung-Eun;Choi, Young-Jong;Lee, Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

Heat Transfer Characteristics of Radiation-Mixed Convection in a Three-Dimensional PCB Channel (3차원 PCB 채널내에서의 복사-혼합대류 열전달 특성)

  • Lee, J.H.;Park, K.W.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.561-575
    • /
    • 1996
  • The interaction of turbulent mixed convection and surface radiation in a three-dimensional channel with the heated blocks is analyzed numerically. Two blocks are maintained at high temperature and the other bottom and horizontal walls are insulated. S-4 method is employed to calculate the effect of the radiative heat transfer. The low Reynolds number k-$\varepsilon$ model proposed by Launder and Sharma is used to estimate the turbulent influence on the heat transfer enhancement. From above modeling, the effects of various channel specifications on the flow and heat transfer characteristics are investigated. The variables used for the present study are Reynolds number, block spacing, the channel height spacing for block and the emissivity. Average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number, emissivity and dimensionless geometric parameters. For the range of conditions in this study, average Nusselt numbers along the block surfaces are strongly influenced by the Reynolds numbers and channel height spacing for block but weakly influenced by the block spacing and the emissivity of the adiabatic walls.

  • PDF