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HIGH-ORDER WEIGHTED DIFFERENCE SCHEMES
FOR THE CONVECTION-DIFFUSION PROBLEMS

S. M. CHOO, S. K. CHUNG AND Y. H. KiM*

ABSTRACT. High-order weighted difference schemes with uniform
meshes are considered for the convection-diffusion problem depending
on Reynolds numbers. For small Reynolds numbers, a weighted cen-
tral difference scheme is suggested since there is no boundary layer.
For large Reynolds numbers, we propose a modified upwind method
with an artificial diffusion in order to overcome nonphysical oscilla-
tion of central schemes and obtain good accuracy in the boundary
layer. Existence and corresponding error estimates of the solution for
the difference schemes have been shown. Numerical experiments are
provided to back up the analysis.

1. Introduction

Consider the one dimensional steady linear convection-diffusion prob-
lem

(lla) —E—w— + b"; = f, TE (O) 1))
with boundary conditions
(1.1b) u(0) = u(1) =0.

Here u(z) is the transport quantity, b is a positive transport velocity
and f(z) is a sufficiently smooth function. The diffusion constant € > 0
is positive, which is proportional to the reciprocal of Reynolds number.
The solution u has a boundary layer for small € > 0.
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The convection-diffusion problem (1.1) arises in diverse areas such as
the ground water pollution problem, the reservoir displacement problem,
a steady state of the linearized Navier-Stokes equations and the drift-
diffusion equation of semiconductor device modeling.

For small ¢, many numerical methods have been proposed for the solu-
tion of (1.1). It is well known that the standard central difference scheme
has order O(h?), but it gives a nonphysical oscillation in the numerical
solution. In order to remove this nonphysical oscillatory phenomena,
Kellogg and Tsan [5] have developed an upwind method with uniform
meshes. The uniform mesh upwind method is of lower order of accuracy
O(h).

In general, we may expect that the error becomes small as h — 0. But
the numerical error of the upwind method with a uniform mesh does not
decrease even though the mesh h decreases because the error depends on
small €. That is, the uniform mesh upwind method is not e-uniform(a
numerical method is said to be e-uniform if numerical solution converges
independently of €). In order to obtain e-uniform convergence, Miller,
O’Riordan and Shiskin [8] and Stynes and Roos [9] adopted nonuniform
mesh upwind- and central- difference schemes. Gartland [4] has used a
uniform mesh difference scheme with perturbation technique.

Several finite element methods such as adaptive finite element meth-
ods and finite volume methods have been also applied to the problem
(1.1)(see, [1], (3], and [6]). In particular, Liang and Zhao[6] have pro-
posed a high-order upwind finite element method for problem (1.1) with
accuracy O(h3||u?||) using the dual partition. They showed that their
scheme is more accurate than the standard central difference scheme for
various € numbers. But the scheme in [6] is neither simple nor e-uniform.

In this paper, we propose two finite difference schemes with uniform
meshes for the problem (1.1) depending on €. One is a weighted central
difference scheme which gives a good accuracy for moderately large e.
The other is a modified upwind difference scheme with artificial diffusion,
which satisfies the maximum principle and produces monotonic solutions
to a boundary layer type problems for large Reynolds numbers. Thus,
this scheme overcomes numerical oscillation and gives astonishingly high
order accuracy.

In section 2, we introduce a weighted central difference scheme for
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(1.1) and show existence and convergence of the numerical solutions
when € is not small. In section 3, we introduce a modified upwind method
with artificial diffusion in order to make the scheme satisfy the maximum
principle. In section 4, we compare numerical results of the proposed
schemes with those of the standard upwind method, the standard central
scheme and the scheme in [6].

2. A Weighted Central Difference Scheme

Let  be the unit interval (0,1) and h = % for a positive integer
M. Let Qp = {z; = ¢hli = 1,--- ,M — 1} and 9y = {z0,zpr}. For
a function v = (v, - ,vps) defined on Qp U 8Q) with v = 0 on 6y,
denote v; = v(x;) for 0 <7 < M.

We now introduce the discrete L2-space with an inner product.

M-1
(v,w)p =h Z VW,
i=1

for functions v and w defined on j,. Define the difference operators as

Vi+1 —V; D v = Vi — Vi1
— 1 - —,

Dov; = ,
+Y A A

D%y = Dy(D_w).
The discrete L? norm is defined by
1
[ollon = (v,v)3,

and the supremum norm and the discrete H!-seminorm are defined,
respectively, by

M
- , 2 _ 2
[vllco = 1352%\31(——1 vsl, lv|f = hZ;(D_’U),L.
P
Whenever there is no confusion, we use (-,-) and || - || instead of (-,-)p,

and || - [|o,n, respectively.
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Then the approximate solution U; for (1.1) is defined as a solution of

(21a) —eD?U; +b{aD_U;+ (1—a)D Ui} =F;, 1<i<M-1,

(2.1b) Ug=Upm =0,

where the weighting factor a is given by

1 ch
(2.2) x = 'é' + m

and F; = f; + f; with

~ h, € ’ h2 1" 1 Ti 4 (4)
fi=(-2a)g A+ A} + G h +agg | @mi— o)t O(eds
LN i 4p(4)
+(1—a)m 5 (Tig1 — 8)* Y (s)ds.

REMARK 2.1. The weighting factor « satisfies an inequality

! o< liminllre 2
g SaS o TmI RS Re

where Rez% is the Reynolds number.
Now, we prove the existence of the numerical solution of (2.1).
THEOREM 2.1. There exists a unique solution of the scheme (2.1).

PROOF. The equation (2.1) can be expressed in the form
(2.3) AUi_y + BiU; + CiUjyr = B2F,, 1<i< M -1,
where A; + B; + C; = 0 and

A; = —e—hba, B;=2+hb2a—1)>0, C;=—€e+hb(l—a).

Since the matrix having B; as the diagonal element and A;, C; as off-
diagonal elements is nonsingular, the solution U exists uniquely. O
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REMARK 2.2. If Reynolds number Re < 2, then the matrix in Theo-
rem 2.1 becomes an M-matrix.

The identities in Lemma 2.1 are obtained by the differentiation of
each side of the equation (1.1), which will be used for the error analysis.

LEMMA 2.1. For the solution u of (1.1), the following identities hold.
(1) u 5) = _u(6) + lf(4)

(2) u” = §u®+ 3 f".

(B) w' =fu" +3f =@+ 5+ 1S

LEMMA 2.2. For the solution u of (1.1), we obtain

e(u; — D*u;) + b[{aD_u; + (1 — &) Dyu;} — uj)
(T 46
a24h/ (xz—l 3) Uu (S)ds

Tit1

(zip1 — 8)*u'®(s)ds

+ (I - a)—— 24h

+eO(h4llu‘6’ll)+fi, 1<i<M-1.

PROOF. From the definition of D?, we obtain
" h?
(2.4) €(u; — D%*u;) = ¢ {—Eu(‘l)} + eO(h*|[ul® ).

It follows from Lemma 2.1 that

oaD_u;+ (1 —a)Diu;
h h2 111 h3

=u;+(1—2a)2uz + — g Ui +(1—2a)ﬂu(4)

+ aé—iz /mi;(xiq - s)* {guw)(s) + Ef(4)(s)} ds
ez [0t {{u06 + 1100 fas

(2.5)
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Thus, from (2.4)-(2.5) and Lemma 2.1, we have

e(u; — D*w;) + b[{aD_u; + (1 — a)Dyus} — u)]

h? hren2 hle B3
—€— —2a) 2 (S + S L1 —2a) | @
[ 612+b{(1 2a)2(b) +53 0 2a)24Hu

h 1t ’ 2 Iz
+ O ) + (1= 2005 {5 + £} +

2 b
* aﬁ :_1 (zi1 — 8)*ul¥(s)ds
+(1- a)ﬁ /:Jrl(xiﬂ - 5)*u®(s)ds
+ aﬁ :_il(a:i_l — 8) @ (s)ds

+(1- a)ﬁ / m+1(xz‘+1 ~ 5)* ¥ (s)ds.

Ti

Since the first term of the right hand side vanishes for o given in (2.2),
the result follows from the definition of f;. d

The following lemma can be verified using summation by parts and
minimum eigenvalue of a symmetric matrix. The proof can be found in
Agarwal [2].

LEMMA 2.3. For a function v defined on Qj U 6§, with v = 0 on
0y, the following inequalities hold.

(1) the discrete Poincaré inequality: gfﬂ,g—%zﬂvﬂ < ly.
(2) llvliZs < 2(lvl? + [vf?).-

THEOREM 2.2. Let u be the exact solution of (1.1) and U the nu-
merical solution of the scheme (2.1). Let e = u — U. Then there exists
a constant C such that

leleo < Ch*|u®)].
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PROOF. Forming the inner product between (2.1a) and e, we obtain

- e(D2é, e)+b({aD_e+ (1 — a)Dye},e)

(2.6) = —¢(D%*u,e) + b({aD_u+ (1 — a)Dyu},e) — (F,e).

Since —(D?v,v) = |v|? holds for a function v defined on ©; U 8, with
vo = vpr = 0, the left hand side of (2.6) becomes

—e(D%,e)+b({aD_e+(1—a)Die},e) = elef? +b Z(el ei1)?
Hence, it follows from (2.6) that

: 2
(2.7) elel? + b=

M

1
Z(ei - 6i—1)2
i=1

= (—eD*u+b{aD_u+ (1 — a)D;u} — Fye).
It follows from Lemma 2.2 and Young’s inequality that we obtain

(2.8)
|(—eD*u + b{aD_u+ (1 — @)D u} — F,e)|

M-1
= |h Y [-eD?u; + b{aD_u; + (1 — ) D1u;} — Fle;
=1

M-1

= |h Z —eD%u; + b{aD_u; + (1 — a)Dyu;} — fi — files|

1=1

M-1 )

= |h [—eD%u; + b{aD_u; + (1 — @) Dyu;} — (—eu; + bu,) — files
1

=

M-1
=1h Y {e(u; — D?*u;) + b[{aD_u; + (1 — a)Dyu;} — u;] — file;
1

i=
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T4
+(1 - a)iﬁ/ (@iy1 — 9)*ul®(s)ds + 50(h4)}ei

1
< e(Ch @) + lle]®)-

Using relations (2.6)—(2.8) and Lemma 2.3, we obtain

9 20— 1 & 2 81, 6)12 L L2
eleff +b=—— (e: — e:1)” < e CR¥u|* + S]le]
=1

1
<e (C’h8||u(6)||2 + —2—|e|§) .
Since o > %, the above inequality becomes
lel1 < Ch*[[u®.
Lemma 2.3 completes the proof. a

REMARK 2.3. Since ||u(™]|| = O(¢~™) for the exact solution u of (1.1),
the weighted central difference scheme (2.1) is not e-uniform.

3. A Modified Upwind Method with Artificial Diffusion

Since the scheme (2.1) is not e-uniform, it may not give good numerical
results for small . To overcome this shortage, we will consider a new
finite difference scheme which has more meaningful error bound for large
Reynolds number Rez%. Let Q(«) be a cubic polynomial in o defined

by
Qla) =a(6 —1)2 + (1 — a)8* + %%{a(& ~1)3 4+ (1-a)8%}
€ B
(3.1) - ﬂ%(% —1) - §(1 — 36 +367)

+ (b—zhe)—f{ea _ B)+ bh(5 — o)},

where § = o — 3 with 8 = (e/bh)2.
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LEMMA 3.1. For Re> 2, there exists a unique solution a of Q(a) =0
such that 1 < a <1+ (.

PRrROOF. It follows from (3.1) that

1 1
Q1) = 3 2(hb)°

QL+pB)= —%ﬁ(Reg’ — 2Re? + 9Re + 6) < 0,

(5Re* — 9Re® + 5Re — 3) > 0,

Q(0) = {1~ 12t + 12( )%} > 0,

o h 1 1 1 1
Q(1)=-1- g{l - 3(%)2} - 2(§—e)3b ~ (ﬁg)B{l - 2(%)} <0,
QU+8) =—1— 3(-1-{1;)2 - %{1 + 3(%)2} - 2(%)% <0.

Since Q(a) is a cubic polynomial and Re> 2, we obtain the desired
result. O

REMARK 3.1. The root a of Q(a) = 0 can be calculated easily from
(3.2) by using the Newton’s method.

We now consider a modified upwind method with an artificial dif-
fusion. Let o be the root of Q(a) = 0 with 1 < @ < 1+ § and
O = {xi_1/2li = 1,2,--- , M} the dual partition of (0,1) such that
Zi_12 = x — 6h,i = 1,2,--- ,M. Denote u;,_1/o = u(x;_1/2) and
fi-i/2 = f(@i—1/2) for ¢ = 1,2,--- M. Then U = (Uy,Us, - ,Un)
is defined as a solution of the modified upwind method with artificial
diffusion

£hUi = = €,8(D+Uz - D_Uz)
(3.3a) +b{alU; + (1 —a)Uit1} — {aU;—1 + (1 — )U;}]

Tit1/2 .
=/ f(x)dz + f;, 1<i<M-1,
Ti—1/2

(3.3b) Uo= U =0,
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where

foml= 2 ato - 12+ (1 - ety + P48 — 5 - 1y

6
A (@ig1/2) = f1(@iz1/2)}
+ %(—bhﬁ — B+ €)(fir12 — fii1)2)-

We prove that the scheme (3.3) satisfies the maximum principle which
implies that the scheme (3.3) does not give nonphysical oscillation even
for large Reynolds numbers.

THEOREM 3.1. The modified upwind scheme (3.3) satisfies the max-
imum principle.

PROOF. The equation (3.3) can be expressed as
Titi/2 "
(34) AiUi_1+BiUi+CiUi+1 = / f(.’l))d.’l:—!—fz, 1< < M1,
Ti—1/2

where

Ai:————ba, Bi=¥+b(2a—1), Ci:—gg-'f-b(l—a).

Since a > 1, we obtain
A; <0, B; >0, C; <0, and A;+B;+C; =0.

Hence the matrix derived in (3.4) is an M —matrix. Thus we obtain the
maximum principle. O

Integrating each side of (1.1a) from z;_; /2 0 T;11/2, we obtain the
following lemma.

LEMMA 3.3. For the solution u of (1.1), we have, for 1 <i < M —1,

Tiy1/2

“G(U;+1/2 - u;—l/z) +0(uir1/2 — wim1y2) = / f(z)dz.

Ti-1/2
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LEMMA 3.4. For the solution u of (1.1), we have, for 1 <: < M -1,

M) Uipl =Uip1/2 + 5hu;+1/2 + %52}‘2(1 + %)ugﬂﬂ
- %f£+1/2 + é/::; u* () (zig1 — t)3dt.
() ,
u; =uiy1/2 + (0 — Dhug g9
+ %(6 —1)’R*(1 + %ﬁ)uﬁl/z
S g [ 0

PROOF. Since the proof of (2) is similar to that of (1), we will only
prove (1). Applying Taylor expansion and differentiating (1.1a), we ob-
tain

Uit = U Shu, n2y) L ssnsul
i+1 = Uir1/2 T ONU; g /0 + 3 R ;9 + 6 R ;1170
(3.5) 1 Titl
+ g/ wt(t)(wig1 — t)%dt,
Tit1/2

1 b 1" 1 !
(3.6) Uirr/2 = g“i+1/2 ~ Jitye
Replacing u;:Ll /2 in (3.5) by (3.6), we complete the proof. O

LEMMA 3.5. For the solution u of (1.1), we have, for 1 <i < M —1,

— eB(Dyu; — D_w;) + b[{ou; + (1 — @)ui+1} — {aui—1 + (1 — a)u;}]

Tit1/2 .
=I1+I2+I3+I4+/ f(a:)dx+fi,
Tiw1/2
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where

+ b(1 - 0‘)} /mi+1 u®(t) (241 — t)°dt,

Tit1/2

+b ) u® (t)(xz; — t)3dt,
1.+1/2
—-b(1 - a)} / u(4)(t)(a:,~ - t)3dt,
Ti-1/2

Ti—1
a) / u® () (-1 — t)3dt.
Ti-1/2

PRrROOF. From definitions of D and D_, we obtain

(3.7)
— eB(Diu; — D_w;) + b{ou; + (1 — a)uit1} — {oaui—1 + (1 — a)u;}]

= {_Tﬂ +b(1 - a)}uiﬂ + (fg + ba) U

+{f b(l—a)}uz— (%+ba> Ui—1.

Using Lemma 3.4, (3.7) can be expressed as
(3.8)
— €B(Dyu; — D_u;) + bf{au; + (1 — a)uir1} — {oui—1 + (1 — a)us}]

= b(Uit1/2 — ui—1/2) + (—bBh — fﬁ)(“;ﬂ/z - U;—l/z)
+ gh2 [a(d —1)24+(1-a)d®+ ?—’g{a(é —1)% 4+ (1 - )8%}

— TN f—“‘—\
e Te

-~
i
O] = @I'—-‘ O>IP—‘ O)l'—‘

l
=%
|

186 ) ” "
bh(25 -1) - —(352 30 + 1) [ (s41/2 — Ui—1/2)

3 2
# [0 008 + 0l - %) - T80 4 30 1) | (@)

- f (1131'_1/2)) + 1L+ I+ Is+ 1y

Since

!

4 1 € ” ”
(3.9) Uip1/o — Ui1jo = 3(fi+1/2 ~ ficiy2) + g(“i+1/2 - Ui—1/2)
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and the first two terms of the right hand side of (3.8) become

Tit1/2 , ;
[ f@)da + (-b8h = B+ )(uiyaso — i)

i—1/2
the equation (3.8) is expressed as
(3.10)
— €eB(Diu; — D_w;) + b[{ou; + (1 — @)uip1} — {oui—y + (1 — a)us}]
b

1" ’" ZTiti/2
= 2h2Q(a)(Ui+1/2 —Ui_1/2) +/ f(z)dz
Ti-1/2

4 —%29{(1 — Q)+ a5 —1)%)
2
# 22 =304 1)| (7 (winay) — £ (@icaya)

1
+ 3{—br3h +€(1 = B)}fiz12 — ficry2) + i+ o+ Iz + .
Since Q(a) = 0, we obtain the required result from the definition of f;.0

The following lemma is obtained by simple calculation.
LEMMA 3.6. There exists a positive constant C such that
Lrz; >Ch, 1<i<M-1.
THEOREM 3.2. Let u be the exact solution of (1.1) and U the nu-

merical solution of (3.3). Let e = u — U. Then there exists a constant
C such that

lello < C (é)2 B3 [u®].

PrROOF. It follows from (3.3a) and Lemma 3.5 that
Lre; = —€B(Diu; — D_u;)
+ b[{ou; + (1 — @uip1} — {owi—1 + (1 — @)u;}]
Tiv1/2 -
- [ e R
Ti-1/2
=L+ L+ 13+ 14
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Using Holder inequality, we obtain

Gﬂ h7/2
I < 2 6 ( 3 b+ba> W67/2”u(4)||L2(zi+1/2azi+1)’

8 B2 T2
‘I2| h +b \/,7 ( _6) “u ||L2($Ei,-’lfi+1/2)7

3¢ h'2 ey @
< = — i
|Ig| 6 ( h —-b+ ba \/7 1) ||u ”Lz(xi—l/Zazz)’

136} h7/2
< 5 (2 +00) - O e

Sincel <a<1+8,d=a—pand 8= ()% we have
|Il + Iy + I3 +I4|
bhi .
< B2 {6 (55 +1) + 20)F (G + ) 1w
b 2 7 3
ff{ﬁ(ﬂ £ 1)+ (20588 + 14 /)@
< CBRE [u?)]].

(3.11)

Thus we have from (3.11) and Lemma 3.7 that
[Chesl < CBRE [uD] < Lr(CPRE [u?)]:)

We obtain the desired result by the maximum principle of the operator
Lh. O

4. Numerical Experiments

In this section, numerical results of the standard upwind scheme
(SUS), the standard centered scheme (SCS), the high-order upwind scheme
(HOUS) in [6], the weighted central scheme (WCS) in section 2 and the
modified upwind scheme (MUS) in section 3 are given. Numerical com-
putations are performed using MAPLE with digits=40.
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ExAMPLE 4.1. Consider a problem

d?u  du
(4.1) —GEEZ- + EJ; = f,

If we take f(z) = —1 in (4.1), then the exact solution u of (4.1) is

u(0) = u(1) = 0.

x

e« —1

i
€

u(z) = —z+

Table 4.1 shows the estimates of error ||e||, for various grid sizes with
large €. We observe that the weighted central scheme (2.1) is O(h*)
accurate and more accurate than the standard upwind scheme and the
standard centered scheme. The WCS is not better than HOUS, but it
is comparable to HOUS when f(x) is constant.

€ h SUS scs HOUS WCS Re
L 62x107%  10x107!2  17x107%2  70x10722 .0001
1000 L 31x107%  .26x1071%  .11x10723  .43x10-23 .00005
% 16x1078  .65x10~14 .68x10—25 27x10—24 .000025
3 62x1076  10x10~? 17x10717 70x10~17 .001
100 515 .31x10~6%  26x1010 .11x10~18 43x10~18 .0005
5 16x10-%  65x10~1! .68x10—20 .27x10~19 .00025
= .62x107*  .10x107© 17x10712 70x10712 .01
10 > 31x1074  .26%x10~7 11x1013 .43x10~13 .005
& 16x10~4  .65%10°8 .68x10~15 27x10~14 .0025
i 701072 10x10-3 17%x10~7 67x10~7 1
1 7 30x10~2  .25%x10~4 .10x10~8 42x108 .05
2  -15x107%  63x107° 66x10~10  .26x107° 025
% 13 34x1071 47x1073 20x1072 1
0.1 2% 76x1071  79%10™2 31x10™4 13x103 5
& 42x107! 19x1072 .20x10-° 80x107° .25

Table 4.1. ||e]lo with large e.

Table 4.2 shows the estimates of error ||e|| oo for various grid sizes with
small e. We observe that the modified upwind method with an artificial

diffusion (MUS) is comparable to HOUS in [6].
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€ h SUS _ SCSs HOUS WCs  MUS Re
i .90 70 20x1072 45 411072 10
001 35 16 44 .83x1072 20 17x1071 5
= 20 20 68x10~2  .46x1071 .19x107* 2.5
& 10x107' 5.0 20x107° 2.5 58x1078 100
0001 & .20x107' 14 16x1074 93 44x1074 50
& 38x107t .85 13x10~3 73 33x1073 25

Table 4.2. ||le]|co With small €.

EXAMPLE 4.2. We now consider the test problem (4.1) when f(z) =
20ez® — 5z, Then the exact solution u of (4.1) is

x

e —1
u(z) = —2° + ——.
e —1

Table 4.3 and Table 4.4 show error ||e]|oo for various grid sizes and e.
We observe that WCS is more accurate than HOUS when ¢ is large and
MUS is comparable to HOUS for small e when f(z) is not constant.

€ h sSUS SCS HOUS WCS Re
Tlé .63x102 64x10~2 .13x1078 70x10—22 .0001
1000 2  .15x1072  .16x10%  .81x1071° .43x10~23 .00005
5 .40%x10~3 40x1078 51x10-11 27x10724 .000025
L 61x1072  .64x107%  .18x1077 70x10~17 .001
100 21—0 15%1072 .16x10~2 .81x107° .43x10718 .0005
113 .33x103 40%x10~3 51x10~10 27%10719 .00025
L 36x1072  60x107%  .13x107° 70x10712 .01
10 -21—0 .38x10™8 15%x102 .81x10~8 43x10713 .005
L 31x1073  38x107%  51x107° 27x10714 .0025
11—0 .18x10-1 27x1072 .13%x1075 B7x107 1
1 o 98x10~2 67x1073 .80x10~7 42x1078 .05
L 50x1072  17x107%  .50x107° 261079 025
116 .18x10~1 27x1072 .13x10~5 B7x10~7 1
0.1 % .98x10~2 67%x10~3 .80%x10~7 .42x10~8 .05
L 50x1072  .17x107%  50x107° 26x107° 025

Table 4.3. |le||co With large .
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€ h SUS SCS HOUS _WCS  MUS Re
= 11 65  .19x1072 45 41x107? 10
0.01 & 72x1071 42 .83x1072 .20 17x1071 5
5 16 20 .68x1072  .46x10”! .19x107' 25
& .16 48  .20x107° 2.5 58x107° 100
0001 s  .85x107! 14 16x10~* 93 A44x10~4 50
=  -50x10-! 85  .13x107° 73 33x107% 25

Table 4.4. ||e||oo With small €.

CoNCLUDING REMARKS. We have considered two weighted difference
schemes with uniform meshes for the convection-diffusion problem and
compared them with other schemes. One is a weighted central difference
scheme for small Reynolds number and the other is a modified upwind
method with artificial diffusion for large Reynolds number not less than
2. We obtain good numerical results for each case depending on Reynolds
numbers. The suggested schemes work for the equation (1.1) with a lower
order term «cu under the condition b? + 4ec > 0. Unfortunately, these
schemes are not e-uniform. We will present an e-uniform finite difference
scheme with uniform meshes for singular convection-diffusion problems
elsewhere.
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