• Title/Summary/Keyword: hexagonal boron nitride

Search Result 81, Processing Time 0.035 seconds

Optimized Decomposition of Ammonia Borane for Controlled Synthesis of Hexagonal Boron Nitride Using Chemical Vapor Deposition

  • Han, Jaehyu;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.285-285
    • /
    • 2013
  • Recently, hexagonal boron nitride (h-BN), which is III-V compound of boron and nitride by strong covalent sp2 bonds has gained great interests as a 2 dimensional insulating material since it has honeycomb structure with like graphene with very small lattice mismatch (1.7%). Unlike graphene that is semi-metallic, h-BN has large band gap up to 6 eV while providing outstanding properties such as high thermal conductivity, mechanical strength, and good chemical stability. Because of these excellent properties, hBN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Low pressure and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) methods have been investigated to synthesize h-BN by using ammonia borane as a precursor. Ammonia borane decomposes to polyiminoborane (BHNH), hydrogen, and borazine. The produced borazine gas is a key material that is a used for the synthesis of h-BN, therefore controlling the condition of decomposed products from ammonia borane is very important. In this paper, we optimize the decomposition of ammonia borane by investigating temperature, amount of precursor, and other parameters to fabricate high quality monolayer h-BN. Synthesized h-BN is characterized by Raman spectroscopy and its absorbance is measured with UV spectrophotometer. Topological variations of the samples are analyzed by atomic force microscopy. Scanning electron microscopy and Scanning transmission Electron microscopy are used for imaging and analysis of structures and surface morphologies.

  • PDF

Characterization and surface engineering of two-dimensional atomic crystals

  • Yu, Yeong-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.63.1-63.1
    • /
    • 2015
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, van der Waals (vdW) heterostructures using two dimensional (2D) atomic crystals such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) have been attracted intensely. In particular, for high performance of vdW heterostructures device, ultraclean interface between stacked 2D atomic crystals should be guaranteed. In this talk, I will present fabrication and characterization of the vdW field effect transistors toward performance enhancement by employing TMDCs channel, h-BN insulating layer and graphene electrode. Furthermore, it will also be introduced the characterization and surface engineering of graphene for gas molecule sensor.

  • PDF

Toward Charge Neutralization of CVD Graphene

  • Kim, Soo Min;Kim, Ki Kang
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.268-272
    • /
    • 2015
  • We report the systematic study to reduce extrinsic doping in graphene grown by chemical vapor deposition (CVD). To investigate the effect of crystallinity of graphene on the extent of the extrinsic doping, graphene samples with different levels of crystal quality: poly-crystalline and single-crystalline graphene (PCG and SCG), are employed. The graphene suspended in air is almost undoped regardless of its crystallinity, whereas graphene placed on an $SiO_2/Si$ substrate is spontaneously p-doped. The extent of p-doping from the $SiO_2$ substrate in SCG is slightly lower than that in PCG, implying that the defects in graphene play roles in charge transfer. However, after annealing treatment, both PCG and SCG are heavily p-doped due to increased interaction with the underlying substrate. Extrinsic doping dramatically decreases after annealing treatment when PCG and SCG are placed on the top of hexagonal boron nitride (h-BN) substrate, confirming that h-BN is the ideal substrate for reducing extrinsic doping in CVD graphene.

Measuring the Thickness of Flakes of Hexagonal Boron Nitride Using the Change in Zero-Contrast Wavelength of Optical Contrast

  • Kim, Dong Hyun;Kim, Sung-Jo;Yu, Jeong-Seon;Kim, Jong-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.503-507
    • /
    • 2015
  • Using the reflectivity mode of an optical microscope, we analyzed the optical contrast to identify the layer number of flakes of hexagonal boron nitride on a $SiO_2$/Si substrate. Overall optical contrast in the visible range varies with the thickness of flakes. However, the wavelength of zero contrast exhibits a linear redshift of 0.53 nm per layer, independent of the $SiO_2$ thickness, and increases proportionally with $SiO_2$thickness. Experiments show good agreement with calculations and the results of AFM measurements. These results show that this zero-contrast approach is more accurate and easier than the reflectivity-contrast approach using the overall optical contrast.

Synthesis of Hexagonal Boron Nitride Nanosheet by Diffusion of Ammonia Borane Through Ni Films

  • Lee, Seok-Gyeong;Lee, Gang-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.1-252.1
    • /
    • 2013
  • Hexagonal boron nitride (h-BN) is a two dimensional material which has high band-gap, flatness and inert properties. This properties are used various applications such as dielectric for electronic device, protective coating and ultra violet emitter so on. 1) In this report, we were growing h-BN sheet directly on sapphire 2"wafer. Ammonia borane (H3BNH3) and nickel were deposited on sapphire wafer by evaporate method. We used nickel film as a sub catalyst to make h-BN sheet growth. 2) During annealing process, ammonia borane moved to sapphire surface through the nickel grain boundary. 3) Synthesized h-BN sheet was confirmed by raman spectroscopy (FWHM: ~30cm-1) and layered structure was defined by cross TEM (~10 layer). Also we controlled number of layer by using of different nickel and ammonia borane thickness. This nickel film supported h-BN growth method may propose fully and directly growing on sapphire. And using deposited ammonia borane and nickel films is scalable and controllable the thickness for h-BN layer number controlling.

  • PDF

Reciprocating Wear Test of AISI 52100 Bearing Steel in h-BN-based Aqueous Lubricants

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.228-234
    • /
    • 2023
  • In this study, reciprocating wear tests are performed on AISI 52100 bearing steel to investigate its tribological behavior in a hexagonal boron nitride (h-BN) water solution. The h-BN-based aqueous lubricant is prepared using an atoxic procedure called ultrasonic sonication in pure water. Ball-on-flat reciprocating sliding experiments are conducted, where the ball is slewed on a fixed flat at 50-㎛ displacement. The lubricating behavior of h-BN is compared with that of deionized (DI) water. Results show that the friction coefficient is higher in h-BN testing than that in DI tests, but the results are equalized as the friction coefficient reaches a stable level. Scanning electron microscopic images reveal significant material loss in the center and mild abrasion on the edge of the wear scar in h-BN tests. However, these effects are minor in DI water situations. The results of energy-dispersive X-ray spectroscopy show that considerable oxidation occurs in the central zone of the wear scar in h-BN cases with strong adhesion and material removal. These findings reveal the importance of determining ideal circumstances that can tolerate material friction and wear.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

Controlled Synthesis of Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition

  • Han, Jaehyun;Lee, Jun-Young;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.630-630
    • /
    • 2013
  • Recently, atomically smooth hexagonal boron nitride(h-BN) known as a white graphene has drawn great attention since the discovery of graphene. h-BN is a III-V compound and has a honeycomb structure very similar to graphene with smaller lattice mismatch. Because of strong covalent sp2bonds like graphene, h-BN provides a high thermal conductivity and mechanical strength as well as chemical stability of h-BN superior to graphene. While graphene has a high electrical conductivity, h-BN has a highly dielectric property as an insulator with optical band gap up to 6eV. Similar to the graphene, h-BN can be applied to a variety of field, such as gate dielectric layers/substrate, ultraviolet emitter, transparent membrane, and protective coatings. However, up until recently, obtaining and controlling good quality monolayer h-BN layers have been too difficult and challenging. In this work, we investigate the controlled synthesis of h-BN layers according to the growth condition, time, temperature, and gas partial pressure. h-BN is obtained by using chemical vapor deposition on Cu foil with ammonia borane (BH3NH3) as a source for h-BN. Scanning Transmission Electron Microscopy (STEM, JEOL-JEM-ARM200F) is used for imaging and structural analysis of h-BN layer. Sample's surface morphology is characterized by Field emission scanning electron microscopy (SEM, JEOL JSM-7100F). h-BN is analyzed by Raman spectroscopy (HORIBA, ARAMIS) and its topographic variations by Atomic force microscopy (AFM, Park Systems XE-100).

  • PDF

Synthesis of Hexagonal Boron Nitride Nanocrystals and Their Application to Thermally Conductive Composites (육방정 질화붕소 나노입자 합성 및 열전도성 복합체 응용)

  • Jung, Jae-Yong;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.414-419
    • /
    • 2016
  • Much attention has been paid to thermally conductive materials for efficient heat dissipation of electronic devices to maintain their functionality and to support lifetime span. Hexagonal boron nitride (h-BN), which has a high thermal conductivity, is one of the most suitable materials for thermally conductive composites. In this study, we synthesize h-BN nanocrystals by pyrolysis of cost-effective precursors, boric acid, and melamine. Through pyrolysis at $900^{\circ}C$ and subsequent annealing at $1500^{\circ}C$, h-BN nanoparticles with diameters of ~80 nm are synthesized. We demonstrate that the addition of small amounts of Eu-containing salts during the preparation of melamine borate precursors significantly enhanced the crystallinity of h-BN. In particular, addition of Eu assists the growth of h-BN nanoplatelets with diameters up to ~200 nm. Polymer composites containing both spherical $Al_2O_3$ (70 vol%) and Eu-doped h-BN nanoparticles (4 vol%) show an enhanced thermal conductivity (${\lambda}{\sim}1.72W/mK$), which is larger than the thermal conductivity of polymer composites containing spherical $Al_2O_3$ (70 vol%) as the sole fillers (${\lambda}{\sim}1.48W/mK$).

Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites (필러 네트워크 형성 및 배향이 복합소재 열전도도와 산소투과도에 미치는 영향 고찰)

  • Shin, Haeun;Kim, Chae Bin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • In order to develop an integrated heat dissipating material and gas barrier film for electronics, new polymer was designed and synthesized for preparing composites containing hexagonal boron nitride (hBN) filler. Depending on the size and content of the hBN filler, both thermal conductivity and oxygen transmission rate can be adjusted. The composite achieved a high thermal conductivity of 28.0 W·m-1·K-1 at most and the oxygen transmission rate was decreased by 62% compared to that of the filler free matrix. Effective filler aspect ratios could be estimated by comparing thermal conductivity and oxygen transmission rate with values predicted by theoretical models. Discrepancy on the aspect ratios extracted from thermal conductivity and oxygen transmission rate comparisons was also discussed.