Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.6.268

Toward Charge Neutralization of CVD Graphene  

Kim, Soo Min (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
Kim, Ki Kang (Department of Energy and Materials Engineering, Dongguk University-Seoul)
Publication Information
Applied Science and Convergence Technology / v.24, no.6, 2015 , pp. 268-272 More about this Journal
Abstract
We report the systematic study to reduce extrinsic doping in graphene grown by chemical vapor deposition (CVD). To investigate the effect of crystallinity of graphene on the extent of the extrinsic doping, graphene samples with different levels of crystal quality: poly-crystalline and single-crystalline graphene (PCG and SCG), are employed. The graphene suspended in air is almost undoped regardless of its crystallinity, whereas graphene placed on an $SiO_2/Si$ substrate is spontaneously p-doped. The extent of p-doping from the $SiO_2$ substrate in SCG is slightly lower than that in PCG, implying that the defects in graphene play roles in charge transfer. However, after annealing treatment, both PCG and SCG are heavily p-doped due to increased interaction with the underlying substrate. Extrinsic doping dramatically decreases after annealing treatment when PCG and SCG are placed on the top of hexagonal boron nitride (h-BN) substrate, confirming that h-BN is the ideal substrate for reducing extrinsic doping in CVD graphene.
Keywords
graphene; doping; chemical vapor deposition; single crystalline; hexagonal boron nitride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, et al., Nature 438 197 (2005).   DOI
2 A. K. Geim and K. S. Novoselov Nat. Mater. 6 183 (2007).   DOI
3 C. Dean, A. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, et al. Nature Nanotech. 5 722 (2010).   DOI
4 C. Lee, X. Wei, J. W. Kysar, and J. Hone Science, 321 385 (2008).   DOI
5 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al. Nat. Nanotech. 5 574 (2010).   DOI
6 J. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, et al. Electron Device Letters, IEEE 30 650 (2009).   DOI
7 S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. Golovchenko Nature 467 190 (2010).   DOI
8 S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al. Phys. Rev. Lett. 100 016602 (2008).   DOI
9 J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer Nature Nanotech. 3 206 (2008).   DOI
10 M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, et al., Nano Lett. 10 1149 (2010).   DOI
11 W. H. Lee, J. W. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, et al. ACS Nano 6 1284 (2012).   DOI
12 K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, et al. Proc. Natl. Acad. Sci. USA 102 10451 (2005).   DOI
13 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al. Science 324 1312 (2009).   DOI
14 X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, et al. J. Am. Chem. Soc. 133 2816 (2011).   DOI
15 Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu Nano Lett. 12 414 (2011).
16 J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, et al. ACS Nano 6 3224 (2012).   DOI
17 Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L. Paulus, C.-J. Shih, et al. Nat. Chem, 4 724 (2012).   DOI
18 L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus Phys. Rep. 473 51 (2009).   DOI
19 A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. Magnuson, S. McDonnell, et al. Appl. Phys. Lett. 99 122108 (2011).   DOI
20 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, et al. Nat. Nanotech. 3 210 (2008).   DOI
21 Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang Nano Lett. 11 767 (2011).   DOI