Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.6.414

Synthesis of Hexagonal Boron Nitride Nanocrystals and Their Application to Thermally Conductive Composites  

Jung, Jae-Yong (Powder&Ceramics Division, Korea Institute of Materials Science)
Kim, Yang-Do (Department of Material Engineering, Pusan National University)
Shin, Pyung-Woo (Department of New Material Engineering, Changwon National University)
Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science)
Publication Information
Journal of Powder Materials / v.23, no.6, 2016 , pp. 414-419 More about this Journal
Abstract
Much attention has been paid to thermally conductive materials for efficient heat dissipation of electronic devices to maintain their functionality and to support lifetime span. Hexagonal boron nitride (h-BN), which has a high thermal conductivity, is one of the most suitable materials for thermally conductive composites. In this study, we synthesize h-BN nanocrystals by pyrolysis of cost-effective precursors, boric acid, and melamine. Through pyrolysis at $900^{\circ}C$ and subsequent annealing at $1500^{\circ}C$, h-BN nanoparticles with diameters of ~80 nm are synthesized. We demonstrate that the addition of small amounts of Eu-containing salts during the preparation of melamine borate precursors significantly enhanced the crystallinity of h-BN. In particular, addition of Eu assists the growth of h-BN nanoplatelets with diameters up to ~200 nm. Polymer composites containing both spherical $Al_2O_3$ (70 vol%) and Eu-doped h-BN nanoparticles (4 vol%) show an enhanced thermal conductivity (${\lambda}{\sim}1.72W/mK$), which is larger than the thermal conductivity of polymer composites containing spherical $Al_2O_3$ (70 vol%) as the sole fillers (${\lambda}{\sim}1.48W/mK$).
Keywords
Hexagonal boron nitride; Nanocrystal; Synthesis; Thermal conductivity; Europium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando and D. Golberg: Nano Lett., 10 (2010) 5049.   DOI
2 T. Terao, Y. Bando, M. Mitome, K. Kurashima, C. Y. Zhi, C. C. Tang and D. Golberg: Physica E Low Dimens. Syst. Nanostruct., 40 (2008) 2551.   DOI
3 G. Postole, A. Gervasini, C. Guimon, A. Auroux and B. Bonnetot: J. Phys. Chem. B, 110 (2006) 12572.
4 T. H. Chiang and T. E. Hsieh: J. Inorg. Organomet. Polym. Mater., 16 (2006) 175.   DOI
5 T. M. Tritt: Thermal Conductivity, Kluwer Academic Publishers, New York (2004) 114.
6 Y. Qiu, J. Yu, J. Rafique, J. Yin, X. Bai and E. Wang: J. Phys. Chem. C Nanomater. Interfaces, 113 (2009) 11228.   DOI
7 S. Alkoy, C. Toy, T. Gonul and A. Tekin: J. Eur. Ceram. Soc., 17 (1997) 1415.   DOI
8 H. Chen, Y. Chen, C. P. Li, H. Zhang, J. S. Williams, Y. Liu, Z. Liu and S. P. Ringer: Adv. Mater., 19 (2007) 1845.   DOI
9 J. Zhong, Y. Feng, H. Wang and D. Hu: Ceram. Process. Res., 14 (2013) 269.
10 A. Roy, A. Choudhurry and C. N. R. Rao: J. Mol. Struct., 613 (2002) 61.   DOI
11 L. H. Dreger, V. V. Dadape and J. L. Margrave: J. Phys. Chem., 66 (1962) 1556.   DOI
12 M. I. Baratron, L. Boulanger, M. Cauchetier, V. Lorenzelli, M. Luce, T. Merle, P. Quintard and Y. H. Zhou: J. Eur. Ceram. Soc., 13 (1994) 371.   DOI
13 E. M. Shishonok, S. V. Leonchik and J. W. Steeds: Inorg. Mater., 44 (2008) 490.   DOI
14 Q. L. Liu, F. F. Xu and T. Tanaka: Appl. Phys. Lett., 81 (2002) 3948.   DOI
15 W. Zhou, S. Qi, Q. An, H. Zhao and N. Liu: Mater. Res. Bull., 42 (2007) 1863.   DOI
16 H. Ishida and S. Rimdusit: Thermochim. Acta, 320 (1998) 177.   DOI
17 G. W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon: Compos. A, 37 (2006) 727.   DOI
18 S. Y. Wu, Y. L. Huang, C. C. M. Ma, S. M. Yuen, C. C. Teng and S. Y. Yang: Compos. A, 42 (2011) 1573.   DOI
19 Y. Nagai, and G. C. Lai: J. Ceram. Soc. Jpn., 105 (1997) 197.   DOI
20 P. A. Hochstein: United States, US 5857767 (1999).
21 M. T. Huang and H. Ishida: J. Polym. Sci. B Polym. Phys., 37 (1999) 2360.   DOI
22 G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande: J. Phys. Chem. Solids, 48 (1987) 641.   DOI