DOI QR코드

DOI QR Code

Synthesis of Hexagonal Boron Nitride Nanocrystals and Their Application to Thermally Conductive Composites

육방정 질화붕소 나노입자 합성 및 열전도성 복합체 응용

  • Jung, Jae-Yong (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Yang-Do (Department of Material Engineering, Pusan National University) ;
  • Shin, Pyung-Woo (Department of New Material Engineering, Changwon National University) ;
  • Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science)
  • 정재용 (재료연구소 분말/세라믹연구본부) ;
  • 김양도 (부산대학교 재료공학과) ;
  • 신평우 (창원대학교 신소재공학부) ;
  • 김영국 (재료연구소 분말/세라믹연구본부)
  • Received : 2016.11.13
  • Accepted : 2016.12.08
  • Published : 2016.12.28

Abstract

Much attention has been paid to thermally conductive materials for efficient heat dissipation of electronic devices to maintain their functionality and to support lifetime span. Hexagonal boron nitride (h-BN), which has a high thermal conductivity, is one of the most suitable materials for thermally conductive composites. In this study, we synthesize h-BN nanocrystals by pyrolysis of cost-effective precursors, boric acid, and melamine. Through pyrolysis at $900^{\circ}C$ and subsequent annealing at $1500^{\circ}C$, h-BN nanoparticles with diameters of ~80 nm are synthesized. We demonstrate that the addition of small amounts of Eu-containing salts during the preparation of melamine borate precursors significantly enhanced the crystallinity of h-BN. In particular, addition of Eu assists the growth of h-BN nanoplatelets with diameters up to ~200 nm. Polymer composites containing both spherical $Al_2O_3$ (70 vol%) and Eu-doped h-BN nanoparticles (4 vol%) show an enhanced thermal conductivity (${\lambda}{\sim}1.72W/mK$), which is larger than the thermal conductivity of polymer composites containing spherical $Al_2O_3$ (70 vol%) as the sole fillers (${\lambda}{\sim}1.48W/mK$).

Keywords

References

  1. S. Y. Wu, Y. L. Huang, C. C. M. Ma, S. M. Yuen, C. C. Teng and S. Y. Yang: Compos. A, 42 (2011) 1573. https://doi.org/10.1016/j.compositesa.2011.06.009
  2. Y. Nagai, and G. C. Lai: J. Ceram. Soc. Jpn., 105 (1997) 197. https://doi.org/10.2109/jcersj.105.197
  3. P. A. Hochstein: United States, US 5857767 (1999).
  4. M. T. Huang and H. Ishida: J. Polym. Sci. B Polym. Phys., 37 (1999) 2360. https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2360::AID-POLB7>3.0.CO;2-V
  5. G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande: J. Phys. Chem. Solids, 48 (1987) 641. https://doi.org/10.1016/0022-3697(87)90153-3
  6. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando and D. Golberg: Nano Lett., 10 (2010) 5049. https://doi.org/10.1021/nl103251m
  7. T. Terao, Y. Bando, M. Mitome, K. Kurashima, C. Y. Zhi, C. C. Tang and D. Golberg: Physica E Low Dimens. Syst. Nanostruct., 40 (2008) 2551. https://doi.org/10.1016/j.physe.2007.10.014
  8. G. Postole, A. Gervasini, C. Guimon, A. Auroux and B. Bonnetot: J. Phys. Chem. B, 110 (2006) 12572.
  9. T. H. Chiang and T. E. Hsieh: J. Inorg. Organomet. Polym. Mater., 16 (2006) 175. https://doi.org/10.1007/s10904-006-9037-8
  10. T. M. Tritt: Thermal Conductivity, Kluwer Academic Publishers, New York (2004) 114.
  11. Y. Qiu, J. Yu, J. Rafique, J. Yin, X. Bai and E. Wang: J. Phys. Chem. C Nanomater. Interfaces, 113 (2009) 11228. https://doi.org/10.1021/jp901267k
  12. S. Alkoy, C. Toy, T. Gonul and A. Tekin: J. Eur. Ceram. Soc., 17 (1997) 1415. https://doi.org/10.1016/S0955-2219(97)00040-X
  13. H. Chen, Y. Chen, C. P. Li, H. Zhang, J. S. Williams, Y. Liu, Z. Liu and S. P. Ringer: Adv. Mater., 19 (2007) 1845. https://doi.org/10.1002/adma.200700493
  14. J. Zhong, Y. Feng, H. Wang and D. Hu: Ceram. Process. Res., 14 (2013) 269.
  15. A. Roy, A. Choudhurry and C. N. R. Rao: J. Mol. Struct., 613 (2002) 61. https://doi.org/10.1016/S0022-2860(02)00128-X
  16. L. H. Dreger, V. V. Dadape and J. L. Margrave: J. Phys. Chem., 66 (1962) 1556. https://doi.org/10.1021/j100814a515
  17. M. I. Baratron, L. Boulanger, M. Cauchetier, V. Lorenzelli, M. Luce, T. Merle, P. Quintard and Y. H. Zhou: J. Eur. Ceram. Soc., 13 (1994) 371. https://doi.org/10.1016/0955-2219(94)90013-2
  18. E. M. Shishonok, S. V. Leonchik and J. W. Steeds: Inorg. Mater., 44 (2008) 490. https://doi.org/10.1134/S0020168508050117
  19. Q. L. Liu, F. F. Xu and T. Tanaka: Appl. Phys. Lett., 81 (2002) 3948. https://doi.org/10.1063/1.1524037
  20. W. Zhou, S. Qi, Q. An, H. Zhao and N. Liu: Mater. Res. Bull., 42 (2007) 1863. https://doi.org/10.1016/j.materresbull.2006.11.047
  21. H. Ishida and S. Rimdusit: Thermochim. Acta, 320 (1998) 177. https://doi.org/10.1016/S0040-6031(98)00463-8
  22. G. W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon: Compos. A, 37 (2006) 727. https://doi.org/10.1016/j.compositesa.2005.07.006