DOI QR코드

DOI QR Code

Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites

필러 네트워크 형성 및 배향이 복합소재 열전도도와 산소투과도에 미치는 영향 고찰

  • Shin, Haeun (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Chae Bin (Department of Polymer Science and Engineering, Pusan National University)
  • Received : 2021.01.21
  • Accepted : 2021.02.26
  • Published : 2021.02.28

Abstract

In order to develop an integrated heat dissipating material and gas barrier film for electronics, new polymer was designed and synthesized for preparing composites containing hexagonal boron nitride (hBN) filler. Depending on the size and content of the hBN filler, both thermal conductivity and oxygen transmission rate can be adjusted. The composite achieved a high thermal conductivity of 28.0 W·m-1·K-1 at most and the oxygen transmission rate was decreased by 62% compared to that of the filler free matrix. Effective filler aspect ratios could be estimated by comparing thermal conductivity and oxygen transmission rate with values predicted by theoretical models. Discrepancy on the aspect ratios extracted from thermal conductivity and oxygen transmission rate comparisons was also discussed.

일체형 방열 및 기체 차단 재료 개발을 위하여 신규 고분자를 합성하고 판상형 육방정 질화 붕소(hBN) 필러를 포함하는 복합소재를 제조하였다. 복합소재는 필러의 크기 및 함량에 따라 열전도도 및 산소투과도 조절이 가능하였다. 복합소재는 최대 28.0 W·m-1·K-1의 높은 열전도도를 지녔으며 필러 미포함 샘플 대비 산소투과도는 62% 감소하였다. 열전도도 및 기체투과도 실험 측정값과 모델 예측값 비교를 통해 복합소재 내 필러의 종횡비를 계산하였다. 이러한 결과를 토대로 높은 열전도도 및 낮은 기체투과도는 필러 간 효과적인 네트워크 형성 때문이며 이는 복합소재 제조 시 전단 응력 극대화가 가능한 신규 수지의 특성으로부터 유래된것으로 사료된다. 또한, 열전도도로부터 계산된 필러 종횡비와 산소 투과도로부터 계산된 필러 종횡비 값이 서로 다름을 확인하였고 이에 관련하여 복합소재에서 열 전달 및 기체 투과 메커니즘에 대하여 고찰하였다. 본 연구에서 개발된 높은 열전도도 및 낮은 산소투과도를 갖는 고분자 복합소재는 전자 제품의 일체형 방열 및 산화 방지 재료로 사용 될 수 있다.

Keywords

References

  1. Lu, H., Yao, Y., Huang, W.M., Leng, J., and Hui, D., "Significantly Improving Infrared Light-induced Shape Recovery Behavior of Shape Memory Polymeric Nanocomposite via a Synergistic Effect of Carbon Nanotube and Boron Nitride," Composites Part B: Engineering, Vol. 62, 2014, pp. 256-261. https://doi.org/10.1016/j.compositesb.2014.03.007
  2. Jiang, Q., Wang, X., Zhu, Y., Hui, D., and Qiu, Y., "Mechanical, Electrical and Thermal Properties of Aligned Carbon Nanotube/Polyimide Composites", Composites Part B: Engineering, Vol. 56, 2014, pp. 408-412. https://doi.org/10.1016/j.compositesb.2013.08.064
  3. Kim, C.B., Jeong, K.B., Yang, B.J., Song, J.-W., Ku, B.-C., Lee, S., Lee, S.-K., and Park, C., "Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electro-mechanical Sensors", Angewandte Chemie International Edition, Vol. 56, No. 51, 2017, pp. 16180-16185. https://doi.org/10.1002/anie.201708111
  4. Shin, H., Ahn, S., Kim, D., Lim, J.K., Kim, C.B., and Goh, M., "Recyclable Thermoplastic Hexagonal Boron Nitride Composites with High Thermal Conductivity," Composites Part B: Engineering, Vol. 163, 2019, pp. 723-729. https://doi.org/10.1016/j.compositesb.2019.01.049
  5. Lee, J., Hwang, S., Lee, S.-K., Ahn, S., Jang, S.G., You, N.-H., Kim, C.B., and Goh, M., "Optimizing Filler Network Formation in Poly(hexahydrotriazine) for Realizing High Thermal Conductivity and Low Oxygen Permeation," Polymer, Vol. 179, 2019, pp. 121639. https://doi.org/10.1016/j.polymer.2019.121639
  6. Hill, R.F., and Supancic, P.H., "Thermal Conductivity of Platelet‐filled Polymer Composites," Journal of American Ceramic Society, Vol. 85, No. 4, 2002, pp. 851-857. https://doi.org/10.1111/j.1151-2916.2002.tb00183.x
  7. Song, W.L., Wang, P., Cao, L., Anderson, A., Meziani, M.J., Farr, A.J., and Sun, Y.-P., "Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance," Angewandte Chemie International Edition, Vol. 51, No. 26, 2012, pp. 6498-6501. https://doi.org/10.1002/anie.201201689
  8. Zhu, H., Li, Y., Fang, Z., Xu, J., Cao, F., Wan, J., Preston, C., Yang, B., and Hu, L., "Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets," ACS Nano, Vol. 8, No. 4, 2014, pp. 3606-3613. https://doi.org/10.1021/nn500134m
  9. Shtein, M., Nadiv, R., Buzaglo, M., and Regev, O., "Graphene-based Hybrid Composites for Efficient Thermal Management of Electronic Devices," ACS Applied Materials and Interfaces, Vol. 7, No. 42, 2015, pp. 23725-23730. https://doi.org/10.1021/acsami.5b07866
  10. Shtein, M., Nadiv, R., Buzaglo, M., Kahil, K., and Regev, O., "Thermally Conductive Graphene-polymer Composites: Size, Percolation, And Synergy Effects," Chemistry of Materials, Vol. 27, No. 6, 2015, pp. 2100-2106. https://doi.org/10.1021/cm504550e
  11. Yu, A., Ramesh, P., Sun, X., Bekyarova, E., Itkis, M.E., and Haddon, R.C., "Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-carbon Nanotube Filler for Epoxy Composites," Advanced Materials, Vol. 20, No. 24, 2008, pp. 4740-4744. https://doi.org/10.1002/adma.200800401
  12. Ata, S., Kobashi, K., Yumura, M., and Hata, K., "Mechanically Durable and Highly Conductive Elastomeric Composites from Long Single-Walled Carbon Nanotubes Mimicking the Chain Structure of Polymers," Nano Letters, Vol. 12, No. 6, 2012, pp. 2710-2716. https://doi.org/10.1021/nl204221y
  13. Lin, T.-H., Huang, W.-H., Jun, I.-K., and Jiang, P., "Bioinspired Assembly of Surface-Roughened Nanoplatelets," Journal of Colloid and Interface Science, Vol. 344, No. 2, 2010, pp. 272-278. https://doi.org/10.1016/j.jcis.2009.12.060
  14. Lin, Z., Liu, Y., Raghavan, S., Moon, K.S., Sitaraman, S.K., and Wong, C.P., "Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation," ACS Applied Materials & Interfaces, Vol. 5, No. 15, 2013, pp. 7633-7640. https://doi.org/10.1021/am401939z
  15. Yuan, C., Duan, B., Li, L., Xie, B., Huang, M., and Luo, X., "Thermal Conductivity of Polymer Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets," ACS Applied Materials & Interfaces, Vol. 7, No. 23, 2015, pp. 13000-13006. https://doi.org/10.1021/acsami.5b03007
  16. Yousefi, N., Gudarzi, M.M., Zheng, Q.B., Aboutalebi, S.H., Sharif, F., and Kim, J.K., "Self-alignment and High Electrical Conductivity of Ultralarge Graphene Oxide-Polyurethane Nanocomposites," Journal of Materials Chemistry, Vol. 22, No. 25, 2012, pp. 12709-12717. https://doi.org/10.1039/c2jm30590a
  17. Liang, Q., Yao, X., Wang, W., Liu, Y., and Wong, C.P., "A Three-dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-based Thermal Interfacial Materials," ACS Nano, Vol. 5, No. 3, 2011, pp. 2392-2401. https://doi.org/10.1021/nn200181e
  18. Erb, R.M., Libanori, R., Rothfuchs, N., and Studart, A.R., "Composites Reinforced in Three Dimensions by using Low Magnetic Fields," Science, Vol. 355, No. 6065, 2012, pp. 199-204.
  19. Erb, R.M., Son, H.S., Samanta, B., Rotello, V.M., and Yellen, B.B., "Magnetic Assembly of Colloidal Superstructures with Multipole Symmetry," Nature, Vol. 457, No. 7232, 2009, pp. 999-1002. https://doi.org/10.1038/nature07766
  20. Lanticse, L.J., Tanabe, Y., Matsui, K., Kaburagi, Y., Suda, K., Hoteida, M., Endo, M., and Yasuda, E., "Shear-induced Preferential Alignment of Carbon Nanotubes Resulted in Anisotropic Electrical Conductivity of Polymer Composites," Carbon, Vol. 44, No. 14, 2006, pp. 3078-3086. https://doi.org/10.1016/j.carbon.2006.05.008
  21. Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., and Golberg, D., "Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement," Journal of Physical Chemistry C, Vol. 114, No. 10, 2010, pp. 4340-4344. https://doi.org/10.1021/jp911431f
  22. Jin, L., Bower, C., and Zhou, O., "Alignment of Carbon Nano-tubes in a Polymer Matrix by Mechanical Stretching," Applied Physics Letters, Vol. 73, No. 9, 1998, pp. 1197-1199. https://doi.org/10.1063/1.122125
  23. Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E., and Winey, K.I., "Aligned Single Wall Carbon Nanotubes in Composites by Melt Processing Methods," Chemical Physics Letters, Vol. 330, No. 3-4, 2000, pp. 219-225. https://doi.org/10.1016/S0009-2614(00)01013-7
  24. Angell, C.A., "Formation of Glasses From Liquids and Biopolymers," Science, Vol. 267, No. 5206, 1995, pp. 1924-1935. https://doi.org/10.1126/science.267.5206.1924
  25. Sato, K., Horibe, H., Shirai, T., Hotta, Y., Nakano, H., Nagai, H., Mitsuishi, K., and Watari, K., "Thermally Conductive Composite Films of Hexagonal Boron Nitride and Polyimide with Affinity-enhanced Interfaces," Journal of Material Chemistry, Vol. 20, No. 14, 2010, pp. 2749-2752. https://doi.org/10.1039/b924997d
  26. Xu, Y., and Chung, D.D.L., "Increasing the Thermal Conductivity Of Boron Nitride and Aluminum Nitride Particle EpoxyMatrix Composites by Particle Surface Treatments," Composites Interfaces, Vol. 7, No. 4, 2000, 243-256. https://doi.org/10.1163/156855400750244969
  27. Tanimoto, M., Yamagata, T., Miyata, K., and Ando, S., "Anisotropic Thermal Diffusivity of Hexagonal Boron Nitride-filled Polyimide Films: Effects of Filler Particle Size, Aggregation, Orientation, and Polymer Chain Rigidity," ACS Applied Materials & Interfaces, Vol. 5, No. 10, 2013, pp. 4374-4382. https://doi.org/10.1021/am400615z
  28. Garcia, J.M., Jones, G.O., Virwani, K., McCloskey, B.D., Boday, D.J., ter Huurne, G.M., Horn, H.W., Coady, D.J., Bintaleb, A.M., Alabdulrahman, A.M.S., Alsewailem, F., Almegren, H.A.A., and Hedrick, J.L., "Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines," Science, Vol. 344, No. 6185, 2014, pp. 732-735. https://doi.org/10.1126/science.1251484
  29. Goh, M., Shin, H., and Kim, C.B., "Manipulating Bond Exchange Rates in Vitrimer-Hexagonal Boron Nitride Nanohybrids via Heat Capacity Enhancement," Journal of Applied Polymer Science, Vol. 138, No. 12, 2021, pp. 50079. https://doi.org/10.1002/app.50079
  30. Shin, H., Kim, C.B., Ahn, S., Kim, D., Lim, J.K., and Goh, M., "Recyclable Polymeric Composite with High thermal Conductivity," Composites Research, Vol. 32, No. 6, 2019, pp. 319-326.
  31. Nielsen, L.E., "Generalized Equation for the Elastic Moduli of Composite Materials," Journal of Applied Physics, Vol. 41, No. 11, 1970, pp. 4626-4627. https://doi.org/10.1063/1.1658506
  32. Kim, C.B., Lee, J., Cho, J., and Goh, M., "Thermal Conductivity Enhancement of Reduced Graphene Oxide via Chemical Defect Healing for Efficient Heat Dissipation," Carbon, Vol. 139, 2018, pp. 386-392. https://doi.org/10.1016/j.carbon.2018.07.008
  33. Kang, D.-G., Kim, N., Park, M., Nah, C., Kim, J.S., Lee, C.R., Kim, Y., Kim, C.B., Goh, M., and Jeong, K.U., "Interfacial Engineering for the Synergistic Enhancement of Thermal Conductivity of Discotic Liquid Crystal Composites," ACS Applied Materials & Interfaces, Vol. 10, No. 4, 2018, pp. 3155-3159. https://doi.org/10.1021/acsami.7b16921
  34. Jeong, I., Kim, C.B., Kang, D.-G., Jeong, K.-U., Jang, S.G., You, N.-H., Ahn, S., Lee, D.-S., and Goh, M., "Liquid Crystalline Epoxy Resin with Improved Thermal Conductivity by Intermolecular Dipole-Dipole Interactions," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 57, No. 6, 2019, pp. 708-715. https://doi.org/10.1002/pola.29315
  35. Zhang, Y., Choi, J.R., and Park, S.-J., "Interlayer Polymerization in Amine-terminated Macromolecular Chain-grafted Expanded Graphite for Fabricating Highly Thermal Conductive and Physically Strong Thermoset Composites for Thermal Management Applications," Composites Part A: Applied Science and Manufacturing, Vol. 109, 2018, pp. 498-506. https://doi.org/10.1016/j.compositesa.2018.04.001
  36. Zhang, Y., Choi, J.R., and Park, S.-J., "Enhancing The Heat and Load Transfer Efficiency by Optimizing The Interface of Hexagonal Boron Nitride/Elastomer Nanocomposites for Thermal Management Applications," Polymer, Vol. 143, 2018, pp. 1-9. https://doi.org/10.1016/j.polymer.2018.03.067
  37. Zhang, Y., Heo, Y.-J., Son, Y.-R., In, I., An, K.-H., Kim, B.-J., and Park, S.-J., "Recent Advanced Thermal Interfacial Materials: A Review of Conducting Mechanisms and Parameters of Carbon Materials," Carbon, Vol. 142, 2019, pp. 445-460. https://doi.org/10.1016/j.carbon.2018.10.077
  38. Ha, H., Park, J., Ando, S., Kim, C.B., Nagai, K., Freeman, B.D., and Ellison, C.J., "Gas Permeation and Selectivity of Poly(Dimethylsiloxane)/Graphene Oxide Composite Elastomer Membranes," Journal of Membrane Science, Vol. 518, 2016, pp. 131-140. https://doi.org/10.1016/j.memsci.2016.06.028