• Title/Summary/Keyword: hetero-layer

Search Result 79, Processing Time 0.023 seconds

Fabrication and Electrical Characteristics of Ferredoxin Self-Assembled Layer for Biomolecular Electronic Device Application

  • NAM YUN SUK;CHOI JEONG-WOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.15-19
    • /
    • 2006
  • A ferredoxin adsorbed hetero self-assembled layer was fabricated on chemically modified Au substrate, 4-Aminothiophenol (4-ATP) was deposited onto Au substrate and then N-succinimidyl-3-[2-pyridyldithio] propionate (SPDP) was adsorbed on the 4-ATP layer, since SPDP was used as a bridging molecule for ferredoxin adsorption, Ferredoxin/SPDP/4-ATP structured hetero layer was constructed because of strong chemical binding of ferredoxin, SPDP, and 4-ATP, The surface of the ferredoxin-adsorbed SPDP/4-ATP layer was observed by scanning tunneling microscopy, The hetero film formation was verified by surface plasmon resonance measurement. The current flow and rectifying property based on the scanning tunneling spectroscopy I-V characteristics was achieved in the proposed hetero layer. Thus, the hetero layer structure of ferredoxin functioned as a molecular diode with rectifying property, The proposed molecular diode can be usefully applied for the development of molecular scale electronic devices.

Silicon Heterojunction Solar Cell with HWCVD Passivation Layer (HWCVD 계면 보호층을 적용한 실리콘 이종접합 태양전지 연구)

  • Park, Sang-Hyun;Jeong, Dae-Young;Kim, Chan-Seok;Song, Jun-Yong;Cho, Jun-Sik;Lee, Jeong-Chul;Choe, Deok-Gyun;Yoon, Kyoung-Hoon;Song, Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.346-346
    • /
    • 2009
  • For high efficiency hetero junction solar cell over 20%, good silicon wafer passivation is one of the most important technological factor. Compared to the conventional PECVD technique, HWCVD has appeared as an promising alternative for high quality passivation layer formation. In this work, HWCVD passivation layer characteristics have been intensively investigated on wafer surface treatment, Hydrogen density in deposited thin layer and thermal effects in deposition process. Comprehensive results of the individual process factors on interface passivation has been discussed and resultant silicon hetero junction solar cell characteristics has been investigated.

  • PDF

Electrical Characteristics of OLED using the Hetero-Electrode (이종 전극에 의한 OLED 전기적 특성 연구)

  • Lee, Jung-Ho;Suh, Chung-Ha;Jeong, Ji-Hoon;Kim, Young-Kwan;Kim, Young-Sik;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.274-278
    • /
    • 2004
  • In this study, hetero-electrode structures have been fabricated to increase luminescence efficiency. The presence of a thin layer of Sn or Ag at the organic-aluminum interface enhanced both electron injection efficiency and electroluminescence when compared to OLEDs using homogeneous electrode. In this paper, the effect of the cathode using Sn/Al hetero electrode structure is observed. Electric properties of the OLED using Sn/Al hetero cathode are improved in comparison of only Al cathode. The hetero-electrode existing different energy level induces the advanced structure of OLED can accumulate electron density. The luminescence efficiency of OLED with Sn/Al of Ag/Al cathode is higher because of their higher electron injection efficiency. And, the turn on voltage of the OLED device using Sn thin layer is lowest as about 10 V.

Process and Performance Analysis of a-Si:H/c-Si Hetero-junction Solar Sells Prepared by Low Temperature Processes (저온 공정에 의한 a-Si:H/c-Si 이종접합 태양전지 제조 및 동작특성 분석)

  • Lim, Chung-Hyun;Lee, Jeong-Chul;Jeon, Sang-Won;Kim, Sang-Kyun;Kim, Seok-Ki;Kim, Dong-Seop;Yang-Sumi;Kang-Hee-Bok;Lee, Bo-young;Song-Jinsoo;Yoon-Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.196-200
    • /
    • 2005
  • In this work, we investigated simple Aㅣ/TCO/a-Si:H(n)/c-Si(p)/Al hetero-junction solar cells prepared by low temperature processes, unlike conventional thermal diffused c-Si solar cells. a-Si:H/c-Si hetero-junction solar cells are processed by low temperature deposition of n-type hydrogenated amorphous silicon (a-Si:H) films by plasma-enhanced chemical vapor deposition on textured and flat p-type silicon substrate. A detailed investigation was carried out to acquire optimization and compatibility of amorphous layer, TCO (ZnO:Al) layer depositions by changing the plasma process parameters. As front TCO and back contact, ZnO:Al and AI were deposited by rf magnetron sputtering and e-beam evaporation, respectively. The photovoltaic conversion efficiency under AMI.5 and the quantum efficiency on $1cm^2$ sample have been reported. An efficiency of $12.5\%$ is achieved on hetero-structure solar cells based on p-type crystalline silicon.

  • PDF

Effect of Hydrogen Dilution Ratio on The Si Hetero-junction Interface and Its Application to Solar Cells (수소 희석비에 따른 실리콘 이종접합 계면에 대한 분석 및 태양전지로의 응용)

  • Park, Jun-Hyoung;Myong, Seung-Yeop;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1009-1014
    • /
    • 2012
  • Hydrogenated amorphous silicon (${\alpha}$-Si:H) layers deposited by plasma enhanced chemical vapor deposition (PECVD) are investigated for use in silicon hetero-junction solar cells employing n-type crystalline silicon (c-Si) substrates. The optical and structural properties of silicon hetero-junction devices have been characterized using spectroscopy ellipsometry and high resolution cross-sectional transmission electron micrograph (HRTEM). In addition, the effective carrier lifetime is measured by the quasi-steady-state photocoductance (QSSPC) method. We have studied on the correlation between the order of ${\alpha}$-Si:H and the passivation quality at the interface of ${\alpha}$-Si:H/c-Si. Base on the result, we have fabricated a silicon hetero-junction solar cell incorporating the ${\alpha}$-Si:H passivation layer with on open circuit voltage ($V_{oc}$) of 637 mV.

Generation of Inner Electrical Field in Hetero Structure of LB Ultra Thin Films (LB 초박막 Hetero 구조에서 내장전계의 발생)

  • Kwon, Young-Soo;Kang, Dou-Yol;Hino, Taro
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.511-514
    • /
    • 1987
  • Langmuir-Blodgett (LB) films of TCNQ(tetracyanoquinodimethane) with alkyl radical($C_{12}TCNQ$) were prepared on the sample of Al/LB film/Al type where Al are electrode, and polarization in LB film and dipolar moment of molecules in the films were measured by TSC. $Al_2O_3$ layer was yielded on the electrode by natural oxidation in air. According to the cooperation of $Al_2O_3$ dielectric layer and the polarization of $C_{12}TCNQ$-LB film, the macroscopic electrical field was yielded in LB film and $Al_2O_3$ layer. The field strength in $C_{12}TCNQ$-LB films was evaluated at about $1{\times}10^6{\sim}5{\times}10^6\;V/cm$.

  • PDF

Amorphous Cr-Ti Texture-inducing Layer Underlying (002) Textured bcc-Cr alloy Seed Layer for FePt-C Based Heat-assisted Magnetic Recording Media

  • Jeon, Seong-Jae;Hinata, Shintaro;Saito, Shin
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • $Cr_{100-x}Ti_x$ amorphous texture-inducing layers (TIL) were investigated to realize highly (002) oriented $L1_0$ FePt-C granular films through hetero-epitaxial growth on the (002) textured bcc-$Cr_{80}Mn_{20}$ seed layer (bcc-SL). As-deposited TILs showed the amorphous phase in Ti content of $30{\leq}x(at%){\leq}75$. Particularly, films with $40{\leq}x{\leq}60$ kept the amorphous phase against the heat treatment over $600^{\circ}C$. It was found that preference of the crystallographic texture for bcc-SLs is directly affected by the structural phase of TILs. (002) crystallographic texture was realized in bcc-SLs deposited on the amorphous TILs ($40{\leq}x{\leq}70$), whereas (110) texture was formed in bcc-SLs overlying on crystalline TILs (x < 30 and x > 70). Correlation between the angular distribution of (002) crystal orientation of bcc-SL evaluated by full width at half maximum of (002) diffraction (FWHM) and a grain diameter of bcc-SL indicated that while the development of the lateral growth for bcc-SL grain reduces FWHM, crystallization of amorphous TILs hinders FWHM. $L1_0$ FePt-C granular films were fabricated under the substrate heating process over $600^{\circ}C$ with having different FWHM of bcc-SL. Hysteresis loops showed that squareness ($M_r/M_s$) of the films increased from 0.87 to 0.95 when FWHM of bcc-SL decreased from $13.7^{\circ}$ to $3.8^{\circ}$. It is suggested that the reduction of (002) FWHM affects to the overlying MgO film as well as FePt-C granular film by means of the hetero-epitaxial growth.

Fabrication and Characteristics of Hetero-junction EL Devices Containing Electron Transport Layer and PPV as Emitting Layer (PPV 발광층 및 전자 수송층을 가진 이종 접합구조 EL 소자의 제작 및 특성)

  • Park, Lee Soon;Han, Yoon Soo;Kim, Sung Jin;Shin, Dong Soo;Shin, Won Gi;Kim, Woo Young;Lee, Choong Hun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.710-714
    • /
    • 1998
  • Organic electroluminescence devices (ELD) with hetero-junction structure were fabricated utilizing poly(p-phenylne vinylene) (PPV) as emitting layer and electron transport layer (ETL). 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) was used as an electron transport agent. Copolymers with stilbene type comonomers, such as poly(styrene-co-PVTS), poly(styrene-co-MeO-PVTS) and poly(styrene-co-MeO-ST) were synthesized to be used as a matrix polymer to disperse electron transport agent (PBD). Among the hetero-junction EL devices fabricated with the above materials, the device with poly(styrene-co-PVTS) as matrix polymer for ETL gave the highest luminance ($120.7cd/m^2$, 13 V). EL devices made with poly(styrene-co-MeO-PVTS) or poly(styrene-co-MeO-ST) matrix exhibited lower luminance than the one with polystyrene matrix and the single layer EL (ITO/PPV/Mg) device.

  • PDF

Radiation detector material development with multi-layer by hetero-junction for the reduction of leakage current (헤테르접합을 이용한 누설전류 저감을 위한 다층구조의 방사선 검출 물질 개발)

  • Oh, Kyung-Min;Yoon, Min-Seok;Kim, Min-Woo;Cho, Sung-Ho;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.11-15
    • /
    • 2009
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using a multi-layer technique to decrease dark current. High efficiency materials in substitution for Amorphous Selenium(a-Se) have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using PN junction or Hetero junction already used as solar cell, semiconductor. Particle-In -Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in Particle-In -Binder method. To make up for the weak points, multi-layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity, signal linearity is measured to evaluate multi-layer radiation sensor material.

  • PDF

Numerical Simulation of Phase Separation in Bulk Hetero-junction Photoactive Layer

  • Hang, Nguyen Thi;Van Thuong, Dinh;Nhat, Hoang Nam;Van Chau, Dinh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Morphology evolution of the active layer in bulk hetero-junction organic photovoltaic is modeled and visualized. The width of the phase domain can be predicted using the relationship of characteristics length and evolution time of the process. The 3D numerical simulation of the PCBM/P3HT blend morphology evolution with respect to time is presented. It is observed that the domain width of composition phase can be predicted by using the relationship between value of characteristic length R(t) and evolution time t.