Browse > Article
http://dx.doi.org/10.12925/jkocs.2004.21.4.2

Electrical Characteristics of OLED using the Hetero-Electrode  

Lee, Jung-Ho (Dept of Electronics Eng., Hong-Ik Univ)
Suh, Chung-Ha (Dept of Electronics Eng., Hong-Ik Univ)
Jeong, Ji-Hoon (Dept. of Chemical Eng., Hongik Univ.)
Kim, Young-Kwan (Dept. of Chemical Eng., Hongik Univ.)
Kim, Young-Sik (Dept. of Science., Hong-Ik Univ)
Kim, Yeoung-Chan (Dept of Advanced Meterials Eng., Joong-Bu Univ)
Publication Information
Journal of the Korean Applied Science and Technology / v.21, no.4, 2004 , pp. 274-278 More about this Journal
Abstract
In this study, hetero-electrode structures have been fabricated to increase luminescence efficiency. The presence of a thin layer of Sn or Ag at the organic-aluminum interface enhanced both electron injection efficiency and electroluminescence when compared to OLEDs using homogeneous electrode. In this paper, the effect of the cathode using Sn/Al hetero electrode structure is observed. Electric properties of the OLED using Sn/Al hetero cathode are improved in comparison of only Al cathode. The hetero-electrode existing different energy level induces the advanced structure of OLED can accumulate electron density. The luminescence efficiency of OLED with Sn/Al of Ag/Al cathode is higher because of their higher electron injection efficiency. And, the turn on voltage of the OLED device using Sn thin layer is lowest as about 10 V.
Keywords
OLED(organic light-emitting diode); hetero-electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. D. Parker, Carrier Tunneling and Device Characteristics in Polymer Light-emitting Diodes, J. Appl. Phys., 75(3), 1656 (1994)   DOI   ScienceOn
2 I. H. Campbell, P. S. Davids, and D. L. Smith, The Schottky Energy Barrier Dependence of Charge Injection in Organic Light-Emitting Diodes, Appl. Phys. Lett., 72(5), 1863 (1998)   DOI   ScienceOn
3 I. H. Campbell and D. L. Smith, Schottky Energy Barriers and Charge Injection in meta/Alq/metal Structures, Appl. Phys. Lett., 74(4), 561 (1999)   DOI   ScienceOn
4 B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, Device Model Investigation of Bilayer Organic Light Emitting Diodes, J. Appl. Phys., 87(4), 1974 (2000)   DOI   ScienceOn
5 C. D. J. Blades and A. B Walker, Simulation of Organic Light Emitting Diodes, Synthetic Metals, 111-112, 335 (2002)   DOI   ScienceOn
6 S. J. Martin, J. M. Lupton, I. D. W Samuel, and A. B. Walker Modelling Temperature-dependent Current-voltage Characteristics of an MEH-PPV Organic Light Emitting Device, J. Phys., 14(42), 9925 (2002)
7 X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, and X. M. Ding, Enhancement of Electron Injection in Organic Light-Emitting Devices using an Ag/LiF cathode, J. Appl. Phys., 95(7), 3828 (2004)   DOI   ScienceOn
8 C. W. Tang and S. A. Vanslyke, Organic Electroluminescent Diodes, Appl. Phys., Lett, 51(12), 913 (1987)   DOI
9 G. G. Malliaras and J. G. Scott, Roles of Injection and Mobility in Organic Light Emitting Diodes, Appl. Phys., 83(10), 5399 (1998)   DOI   ScienceOn