• Title/Summary/Keyword: herbicide-tolerant GM crops

Search Result 5, Processing Time 0.026 seconds

Quantitative Analysis of Phosphinothricin-N-acetyltransferase in Genetically Modified Herbicide Tolerant Pepper by an Enzyme-Linked Immunosorbent Assay

  • Shim, Youn-Young;Shin, Weon-Sun;Moon, Gi-Seong;Kim, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.681-684
    • /
    • 2007
  • An immunoassay method was developed to quantitatively detect phosphinothricin-N-acetyltransferase (PAT) encoded by the Bialaphos resistance (bar) gene in genetically modified (GM) pepper. The histidine-tagged PAT was overexpressed in Escherichia coli M15 (pQE3l-bar) and efficiently purified by $Ni^{2+}$ affinity chromatography. A developed sandwich enzyme-linked immunosorbent assay (S-ELISA) method (detection limit: $0.01{\mu}g/ml$) was 100-fold more sensitive than a competitive indirect ELISA (CI-ELISA) method or Western blot analysis in detecting the recombinant PAT. In real sample tests, PAT in genetically modified herbicide-tolerant (GMHT) peppers was successfully quantified [$4.9{\pm}0.4{\mu}g/g$ of sample (n=6)] by the S-ELISA method. The S-ELISA method developed here could be applied to other GMHT crops and vegetables producing PAT.

Development of glufosinate-tolerant GMO detection markers for food safety management (식품안전관리를 위한 제초제 glufosinate 특이적 GM 작물 검출마커 개발)

  • Song, Minji;Qin, Yang;Cho, Younsung;Park, TaeSung;Lim, Myung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • Over 500 genetically modified organisms (GMOs) have been developed since 1996, of which nearly 44% have glufosinate herbicide-tolerant traits. Identification of specific markers that can be used to identify herbicide-tolerant traits is challenging as the DNA sequences of the gene(s) of a trait are highly variable depending on the origin of the gene(s), plant species, and developers. To develop specific PCR marker(s) for the detection of the glufosinate-tolerance trait, DNA sequences of several pat or bar genes were compared and a diverse combination of PCR primer sets were examined using certified reference materials or transgenic plants. Based on both the qualitative and quantitative PCR tests, a primer set specific for pat and non-specific for bar was developed. Additionally, a set of markers that can detect both pat and bar was developed, and the quantitative PCR data indicated that the primer pairs were sensitive enough to detect 0.1% of the mixed seed content rate.

Arthropod Diversity and Community Structure in Fields of Non-genetically Modified (GM) and Herbicide-tolerant GM Rice (PPO 저해 제초제 내성 유전자변형 벼가 절지동물군집에 미치는 영향)

  • Kim, Young-Joong;Lee, Joon-Ho;Back, Kyoungwhan;Kim, Chang-Gi
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.335-343
    • /
    • 2015
  • One of the primary concerns about the environmental risks of genetically modified (GM) crops is that they may have adverse effects on the local arthropod communities. In this study, we investigated whether the arthropod diversity and community structure in fields of GM rice tolerant to protoporphyrinogen oxidase (PPO)-inhibiting herbicides differ from those in non-GM (control) rice fields. The aim of this study was to assess the potential adverse effects of GM rice on the local arthropod communities. During the growing seasons in the study period, we collected arthropods from both fields by using yellow sticky traps and compared the diversity and community structure of arthropods from the two sites. Overall, the GM rice had no significant effect on the diversity of the local arthropod communities. In addition, multivariate analyses (permutational multivariate analysis of variance and nonmetric multidimensional scaling) showed that the structures of arthropod communities were not affected by the rice genotype (GM vs. non-GM), although these comparisons were made using data obtained at different sampling dates.

Development of distinction methods for male-sterile and dwarfism herbicide tolerant Zoysia japonica Steud (웅성불임 및 왜성형질의 제초제저항성 들잔디(zoysia japonica Steud.)의 판별기술 개발)

  • Lee, Bum Kyu;Kang, Hong-Gyu;Ra, Nu Ri;Sun, Hyeon-Jin;Kwon, Yong-Ik;Song, In-Ja;Kim, Chang-Gi;Ryu, Tae-Hun;Park, Kee Woong;Lee, Hyo-Yeon
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.187-191
    • /
    • 2014
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world. Concerns about the potential risks of GM crops are also increasing. Safe management for the development and production of GM crops is required according to Living Modified Organism Act in Korea. Planning about the methods, duration, and frequency of environmental monitoring is also required for commercial use of GM crops. GM Zoysia japonica Steud. (event name: JG21) expressing resistance to glufosinate-ammonium has been generated previously. By using gamma ray treatment to JG21 we also developed male sterility and dwarf Z. japonica (event name: JG21-MS). The objective of this study was to establish the monitoring system for environment release of JG21-MS. In this study we extracted RNA from JG21 and JG21-MS and conducted RAPD (random amplified polymorphic DNA) method to distinguish JG21 and JG21-MS.

Environmental Monitoring of Herbicide Tolerant Genetically Modified Zoysiagrass (Zoysia japonica) around Confined Field Trials (제초제저항성 유전자변형 들잔디의 시험 격리포장 주변 환경방출 모니터링)

  • Lee, Bumkyu;Park, Kee Woong;Kim, Chang-Gi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Song, In-Ja;Ryu, Tae-Hun;Lee, Hyo-Yeon
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world. Seed distribution and transgenes to environmental ecosystem is one of the most important factors in risk assessment and risk management of GM crop. Safe management for the development and commercialization of GM crops is required according to The Act on Transboundary Movements of Living Modified Organisms,etc (LMO Act) in Korea. This study was conducted to setup the environmental monitoring system of GM zoysiagrass (event JG21 and JG21-MS). The monitoring was performed in 4 GMO confined fields, Sungwhan, Ochang, Jeju University and Jeju Namwon. In the result of monitoring, we could not found any gene flow and distribution of GM zoysiagrass in the 3 fields, but one spill of JG21 was found in the Namwon field in 2012. These results suggest that continuous monitoring is necessary to detect the occurrence of GM zoysiagrass for preventing genetic contamination in natural environment.