References
- Alarcon CM, Shan G, Layton DT, Bell TA, Whipkey S, Shillito RD. Application of DNA-and protein-based detection methods in agricultural biotechnology. J. Agric. Food Chem. 67: 1019-1028 (2019) https://doi.org/10.1021/acs.jafc.8b05157
- Broeders SR, de Keersmaecker SC, Roosens NH. How to deal with the upcoming challenges in GMO detection in food and feed. J. Biomed. Biotechnol. Article ID: 402418 (2012)
- Christ B, Hochstrasser R, Guyer L, Francisco R, Aubry S, Hortensteiner S, Weng JK. Non-specific activities of the major herbicide-resistance gene bar. Nat. Plants. 3: 937-945 (2017) https://doi.org/10.1038/s41477-017-0061-1
- Duke SO. Biotechnology: Herbicide-resistant crops. Vol II. pp 94-116. In: Neal, V. A., editor-in-chief. Encyclopedia of Agriculture and Food Systems. van Alfen M (ed). Elsevier, San Diego, CA, USA (2014)
- Herouet C, Esdaile DJ, Mallyon BA, Debruyne E, Schulz A, Currier T, Hendrickx K, van der Klis RJ, Rouan D. Safety evaluation of the phosphinothricin acetyltransferase protein encoded by the pat and bar sequence that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regul. Toxicol. Pharmacol. 41: 134-149 (2005) https://doi.org/10.1016/j.yrtph.2004.11.002
- James C. Global status of commercialized biotech/GM crops. ISAAA Brief No.54. ISAAA: Ithaca, NY, USA (2018)
- Kim YK. Development status and prospect of GM crops. Korea J. Int. Agric. 27: 448-454 (2015) https://doi.org/10.12719/KSIA.2015.27.4.448
- Klumper W, Qaim M. A meta-analysis of the impacts of genetically modified crops. PLoS One. 9: e111629 (2014) https://doi.org/10.1371/journal.pone.0111629
- Korea biosafety clearing house. Approval status of GM crops in korea. Available from: https://www.biosafety.or.kr/approval/list.do?m=030201&s=kbch. Accessed Aug. 30, 2019.
- Kramer MG, Redenbaugh K. Commercialization of a tomato with an antisense polygalacturonase gene: The FLAVRSAVRTM tomato story. Euphytica. 79:293-297 (1994) https://doi.org/10.1007/BF00022530
- Pan A, Yang L, Xu S, Yin C, Wang Z, Zhang D. Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3'-transgene integration sequence. J. Cereal Sci. 43: 250-257 (2006) https://doi.org/10.1016/j.jcs.2005.10.003
- Salisu IB, Shahid AA, Yagoob A, Ali Q, Bajwa KS, Rao AQ, Husnain T. Molecular approaches for high throughput detection and quantification of genetically modified crops: A review. Front Plant Sci. 8: 1670-1680 (2017) https://doi.org/10.3389/fpls.2017.01670
- Taverniers I, Windels P, Vaitilingom M, Milcamps A, van Bockstaele E, van den Eede G, de Loose M. Event-specific plasmid standard and real-time PCR methods for transgenic Bt-11, Bt-176, and GA21 maize and transgenic GT73 canola. J. Agric. Food Chem. 53: 3041-3052 (2005) https://doi.org/10.1021/jf0483467
- Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519-2523 (1987) https://doi.org/10.1002/j.1460-2075.1987.tb02538.x
- Wehrmann A, van Vliet A, Opsomer C, Botterman J, Schulz A. The similarities of bar and pat gene products make them applicable for plant engineers. Nat. Biotechnol. 14:1274-1278 (1996) https://doi.org/10.1038/nbt1096-1274
- Yang L, Pan A, Zhang K, Yin C, Qian B, Chen J, Huang C, Zhang D. Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Res. 14:817-831 (2005) https://doi.org/10.1007/s11248-005-0010-z
- Zhang D, Guo J. The development and standardization of testing methods for genetically modified organisms and their derived products. J. Integr. Plant. Biol. 2011. 53: 539-551 (2011) https://doi.org/10.1111/j.1744-7909.2011.01060.x