• Title/Summary/Keyword: hemihydrate

Search Result 46, Processing Time 0.018 seconds

Synthesis of Fibrous Gypsum from By-Product Gypsum fo Phosphoric Acid Process (인산 석고로부터 섬유상 반수석고의 생성)

  • 배동식;이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.577-582
    • /
    • 1990
  • The synthesis conditions of fibrous calcium sulfate hemihydrate were investigated by using phosphogypsum and calcium sulfate hemihydrate. The unstable organogel was deposited by adding methanol to the saturated solution with gypsum at ageing temperature, and it was crystallized to fibrous gypsum hemihydrate while methanol was removed by rapid filtrating. In case of using calcium sulfate hemihydrate, fibrous $\beta$-calcium sulfate hemihydrate was formed by adding methanol of 67% to saturated solution at 6$0^{\circ}C$ and ageing for 5 minutes and filtering with suction. Minor components in phosphogypsum did not affect the reaction.

  • PDF

Hydration-Setting Property of β-Hemihydrate Gypsum by Adding of Accelerator and Ground Gypsum (경화촉진제 및 마쇄 이수석고 첨가에 의한 β-반수석고의 수화응결 특성)

  • Choi, Jeong-Bong;Kim, Jong-Pal
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.822-829
    • /
    • 1997
  • When $Al_2(SO_4)_3$ as an accelerator was added to $\beta$-hemihydrate gypsum, the setting time, mobility and compressive strength properties of $\beta$-hemihydrate gypsum were examined with the adding of two types grounded gypsum crushed by ball mill. By 15wt% adding of 7% $Al_2(SO_4)_3$ dilute solution, the setting time of $\beta$-hemihydrate gypsum was sharply accelerated than that of non-added $\beta$-hemihydrate gypsum. When ground phospho gypsum(PG) and chemical gypsum(CG) were added to $\beta$-hemihydrate gypsum, the initial and final setting time of $\beta$-hemihydrate gypsum were accelerated markedly with the increasing of grinding time and added amount of ground phospho gypsum. Especially, this trend largely presented when ground phospho gypsum was added to $\beta$-hemihydrate gypsum. The compressive strength of $\beta$-hemihydrate gypsum added by ground phospho and chemical gypsum was largely increased at initial curing time such as 1, 3 days. Particularly, the compressive strength of $\beta$-hemihydrate gypsum added by ground phospho gypsum was increased by 15~20% than that of ground chemical gypsum.

  • PDF

Hardening Characteristics and Microstructure Analysis of Blast Furnace Slag-Cement Mortar Replaced Alpha-calcium Sulfate Hemihydrate (알파반수석고 치환 고로슬래그 시멘트 모르타르의 경화특성 및 미세구조 분석)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Lee, Sang-Kyu;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.18-19
    • /
    • 2017
  • In this study, hardening characteristics and microstructure of blast furnace slag-cement mortar replaced alpha-calcium sulfate hemihydrate were analyzed. As a result of replacing alpha-calcium sulfate hemihydrate with 0, 10, 20, 30%, it was confirmed that the initial and final setting times are faster than that of blast furnace slag-cement mortar. The compressive strength of the specimens containing alpha-calcium sulfate hemihydrate decreased in the range of 42 ~ 76% at age 28 days compared with blast furnace slag-cement mortar. In the case of replacing the alpha-calcium sulfate hemihydrate, the shrinkage did not occur more rapidly than the cement mortar, but the slope of the strain curve showed a linear behavior. The results of scanning electron microscopy images analysis showed that the formation of ettringite was increased at alpha-calcium sulfate hemihydrate replaced mortar.

  • PDF

Evaluation of Sound Insulation Performance of Extruded Cement Panel with a-Hemihydrate Gypsum

  • Kim, Jin-Man;Choi, Duck-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.575-585
    • /
    • 2012
  • The extruded cement panel, which has many advantages as a prefabricated method, has been limited in its application due to its low fire-resistance. However, an extruded cement panel produced by mixing a-hemihydrate gypsum offers dramatically improved fire-resistance and is expected to have wide-ranging applications in the construction sector as an interior material or partition wall between housing units. Sound insulation performance is very important for the partition wall between housing units. In this study, the sound insulation performance of the extruded cement panel produced through the mixture of a-hemihydrate gypsum is reviewed in order to determine its usability for a partition wall between housing units and for interior materials. Through the review it was found that the wall formed using the extruded cement panels produced by mixing the a-hemihydrate gypsum have ★★★ class in sound insulation test, equal or superior compared with the other two types of extruded cement panel walls currently available in the market.

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate (α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

Mechanical Properties of Alpha-Calcium Sulfate Hemihydrate Replaced Concrete for Application to Box Culvert Power Transmission (전력구 콘크리트 구조물 적용을 위한 알파형 반수석고 치환 콘크리트의 역학적 특성)

  • Shin, Kyoung-Su;Kim, Gyu-Yong;Sung, Gil-Mo;Woo, Sang-Kyun;Chu, In-Yeop;Lee, Bo-Kyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • This study evaluated the mechanical properties of the alpha-calcium sulfate hemihydrate replaced concrete to reduce the cracking in a box culvert power transmission. After setting the replacement ratio of alpha-calcium sulfate hemihydrate at 0, 6, 9, 12, and 15%, the setting time, compressive strength, and drying shrinkage were measured and the microstructure and crystal structure were analyzed. As a result, it was confirmed that as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the setting time decreased and the compressive strength declined. On the other hand, when the alpha-calcium sulfate hemihydrate was set with 15% of replacement ratio, about 60% reduction in the drying shrinkage was shown compared to that of ordinary Portland cement. Therefore, it is thought that when the concrete replacing the alpha-calcium sulfate hemihydrate is applied to a box culvert power transmission, the cracking reduction performance will be improved, and the improvement of compressive strength will be required.

Safety Evaluation of Fire Resistant Extruded Panel for Partition Wall System

  • Choi, Duck-Jin;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.586-595
    • /
    • 2012
  • While the extruded cement panel has many advantages compared to drywall, it has limited applicability in buildings due to its low fire resistance. However, an extruded panel in which the fire resistance has been dramatically enhanced through the addition of a-hemihydrate gypsum is expected to become widely applied as a partition wall or interior material for buildings. To ensure its applicability, certain safety requirements for use, such as the leaning load by residents, the impact by indoor articles, and the fire, need to be taken into consideration. The purpose of this study is to review the impact load resistance, horizontal load resistance, and fire resistance as required safety properties for the partition wall and interior materials of the extruded panel that includes a-hemihydrate gypsum. The results of this study show that the impact load resistance of the extruded panel that includes a-hemihydrate gypsum achieves SD grade for industrial buildings, and the horizontal impact load resistance achieves HD grade for public buildings. In addition, it provides fire-resistance for approximately 7 minutes longer than the existing extruded cement panel. Based on this result, it is confirmed the extruded panel incorporating a-hemihydrate gypsum has adequate safety properties for use as partition wall or interior material.

Effects of Salts on the Hydration of $\alpha$-Calcium Sulfate Hemihydrate ($\alpha$형 반수석고의 수화에 미치는 염류의 영향)

  • 최상흘;이구종;홍성윤;이석곤
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.449-454
    • /
    • 1988
  • The effects of salts which was used as a catalysis in formation of $\alpha$-calciumusulfate hemihydrate from dicalcium sulfate hydrate were investigated on the hydration of $\alpha$-calciumsulfate hemihydrate. The hydration of $\alpha$-calciumsulfate hemihydrate was studied by the measurements of crystalline water, heat evolution. Also the hydrates were analyzed by XRD, DSC and SEM. The promotive effect each salts on the hydration was as follows: NaCl>NH4Cl>NaNO3>NH4NO3, and the hydration rate was accelerated with concentration of salts. The effect of Al2(SO4)3 and potassium sodium tartrate on the hydration was slmilar to water, whereas sodium succinate and gelatin retarded the hydration in comparision with water. These salts affected the hydration time but total heat evoution was similar.

  • PDF

Effects of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrated from by-Product Gypsum of Phosphoric Acid Process at Hydrothermal Condition (가압수열 수용액중에서 인산석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 1987
  • The effects of salts such as aluminum sulfate as inorganic salt(2-4%), and sodium salts of citrate, tartrate, succinate, potassium tartrate and gelatin as organic salts(0.1%) on the formation of ${\alpha}$-calcium sulfate hemihydrate from by-product gypsum of phosphoric acid process under hydrothermal condition at 123$^{\circ}C$ and 133$^{\circ}C$ were investigated. Aluminum sulfate solution exhibited the catalystic effected on the crystallization of ${\alpha}$-calcium sulfate hemihydrate of which was assumed in the prismatic form, and organic salts solution exhibited little effect on the catalystic action to the crystallization, than inorganic salts. In the acidic solution with sulfuric acid(pH=2), needle like crystal of calcium sulfate hemihydrate was obtained. Hydrothermal process with aluminum sulfate solution also showed certain amounts of impurity removal such as phosphorus penataoxide from calcium sulfate hemihydrate.

  • PDF

Fire-Resistance Property of Cement Extruding Panel Mixed with Alpha-Hemihydrate Gypsum (알파형 반수석고를 혼입한 시멘트 압출 패널의 내화특성)

  • Choi, Duck-Jin;Lee, Min-Jae;Shin, Sang-choul;Kim, Ki-Suk;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.109-110
    • /
    • 2011
  • Gypsum is an important building material used to provide fire resistance to constructions by reducing their temperature rises. As the hardened gypsum is exposed to fire, evaporation of both the free water and the chemical bond water is easier than that in the cement extruding panel. The purpose of this study is to investigate the utilizability of alpha-hemihydrate gypsum to prevent spalling failure of cement extruding panel exposed to fire. This paper reports the fire-resistance property of a controled general cement extruding panel(C100), and gypsum-cement extruding panels(C50A50, A100) according to replacement ratio of alpha-hemihydrate gypsum. As a results, it is found that A100 and C50A50 are more effective to prevent the explosive spalling failure under standard fire condition than C100.

  • PDF